Suppr超能文献

刺毛鼠(刚毛鼠属)已经进化出细胞特征以支持再生性愈合。

Spiny mice (Acomys) have evolved cellular features to support regenerative healing.

作者信息

Allen Robyn S, Seifert Ashley W

机构信息

Department of Biology, University of Kentucky, Lexington, Kentucky, USA.

The Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky, USA.

出版信息

Ann N Y Acad Sci. 2025 Feb;1544(1):5-26. doi: 10.1111/nyas.15281. Epub 2025 Jan 13.

Abstract

Spiny mice (Acomys spp.) are warm-blooded (homeothermic) vertebrates whose ability to restore missing tissue through regenerative healing has coincided with the evolution of unique cellular and physiological adaptations across different tissue types. This review seeks to explore how these bizarre rodents deploy unique or altered injury response mechanisms to either enhance tissue repair or fully regenerate excised tissue compared to closely related, scar-forming mammals. First, we examine overall trends in healing Acomys tissues, including the cellular stress response, the ability to activate and maintain cell cycle progression, and the expression of certain features in reproductive adults that are normally associated with embryos. Second, we focus on specific cell types that exhibit precisely regulated proliferation to restore missing tissue. While Acomys utilize many of the same cell types involved in scar formation, these cells exhibit divergent activation profiles during regenerative healing. Considered together, current lines of evidence support sustained deployment of proregenerative pathways in conjunction with transient activation of fibrotic pathways to facilitate regeneration and improve tissue repair in Acomys.

摘要

刺毛鼠(Acomys spp.)是恒温脊椎动物,其通过再生愈合恢复缺失组织的能力与不同组织类型中独特的细胞和生理适应性的进化同时出现。本综述旨在探讨与密切相关的形成瘢痕的哺乳动物相比,这些奇特的啮齿动物如何利用独特或改变的损伤反应机制来增强组织修复或使切除的组织完全再生。首先,我们研究刺毛鼠组织愈合的总体趋势,包括细胞应激反应、激活和维持细胞周期进程的能力,以及生殖成年个体中通常与胚胎相关的某些特征的表达。其次,我们关注那些表现出精确调控的增殖以恢复缺失组织的特定细胞类型。虽然刺毛鼠利用许多与瘢痕形成相关的相同细胞类型,但这些细胞在再生愈合过程中表现出不同的激活模式。综合来看,目前的证据支持在刺毛鼠中持续部署促进再生的途径,并结合纤维化途径的短暂激活,以促进再生并改善组织修复。

相似文献

1
Spiny mice (Acomys) have evolved cellular features to support regenerative healing.
Ann N Y Acad Sci. 2025 Feb;1544(1):5-26. doi: 10.1111/nyas.15281. Epub 2025 Jan 13.
2
Specific cell states underlie complex tissue regeneration in spiny mice.
bioRxiv. 2025 Feb 11:2025.02.10.637521. doi: 10.1101/2025.02.10.637521.
3
ECM-Focused Proteomic Analysis of Ear Punch Regeneration in .
J Proteome Res. 2025 Jul 4;24(7):3202-3220. doi: 10.1021/acs.jproteome.4c00810. Epub 2025 Jun 19.
4
ECM-Focused Proteomic Analysis of Ear Punch Regeneration in .
bioRxiv. 2023 Oct 17:2023.10.11.561940. doi: 10.1101/2023.10.11.561940.
5
Complex tissue regeneration in reveals a phylogenetic signal for enhanced regenerative ability in deomyine rodents.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2420726122. doi: 10.1073/pnas.2420726122. Epub 2024 Dec 30.
6
Bioinspired Strategies for Wound Regeneration.
Cold Spring Harb Perspect Biol. 2023 Jul 5;15(7):a041240. doi: 10.1101/cshperspect.a041240.
8
Apoptosis recognition receptors regulate skin tissue repair in mice.
Elife. 2023 Dec 21;12:e86269. doi: 10.7554/eLife.86269.
9
Extracellular matrix repair and organization of chronic infected diabetic wounds treated with methacrylated chitosan-based hydrogels.
Acta Biomater. 2025 Jun 1;199:166-177. doi: 10.1016/j.actbio.2025.04.062. Epub 2025 May 1.
10
Laser therapy for treating hypertrophic and keloid scars.
Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD011642. doi: 10.1002/14651858.CD011642.pub2.

引用本文的文献

1
Acomys cahirinus develop lung stroma distortion but not fibrosis after bleomycin-induced injury.
Inflamm Regen. 2025 Aug 29;45(1):27. doi: 10.1186/s41232-025-00391-4.

本文引用的文献

1
Type III Collagen Regulates Matrix Architecture and Mechanosensing during Wound Healing.
J Invest Dermatol. 2025 Apr;145(4):919-938.e14. doi: 10.1016/j.jid.2024.08.013. Epub 2024 Sep 3.
2
Cellular senescence and wound healing in aged and diabetic skin.
Front Physiol. 2024 Feb 19;15:1344116. doi: 10.3389/fphys.2024.1344116. eCollection 2024.
3
Cellular senescence: Neither irreversible nor reversible.
J Exp Med. 2024 Apr 1;221(4). doi: 10.1084/jem.20232136. Epub 2024 Feb 22.
5
Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice.
Dev Cell. 2024 Feb 26;59(4):496-516.e6. doi: 10.1016/j.devcel.2023.12.017. Epub 2024 Jan 15.
6
Delayed Collagen Production without Myofibroblast Formation Contributes to Reduced Scarring in Adult Skin Microwounds.
J Invest Dermatol. 2024 May;144(5):1124-1133.e7. doi: 10.1016/j.jid.2023.10.029. Epub 2023 Nov 29.
7
Enduring questions in regenerative biology and the search for answers.
Commun Biol. 2023 Nov 9;6(1):1139. doi: 10.1038/s42003-023-05505-7.
8
Implications of Cellular Mechanical Memory in Bioengineering.
ACS Biomater Sci Eng. 2023 Nov 13;9(11):5985-5998. doi: 10.1021/acsbiomaterials.3c01007. Epub 2023 Oct 5.
9
Spatial transcriptomics reveals asymmetric cellular responses to injury in the regenerating spiny mouse () ear.
Genome Res. 2023 Aug;33(8):1424-1437. doi: 10.1101/gr.277538.122. Epub 2023 Sep 19.
10
The salamander blastema within the broader context of metazoan regeneration.
Front Cell Dev Biol. 2023 Aug 11;11:1206157. doi: 10.3389/fcell.2023.1206157. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验