Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
Commun Biol. 2023 Nov 9;6(1):1139. doi: 10.1038/s42003-023-05505-7.
The potential for basic research to uncover the inner workings of regenerative processes and produce meaningful medical therapies has inspired scientists, clinicians, and patients for hundreds of years. Decades of studies using a handful of highly regenerative model organisms have significantly advanced our knowledge of key cell types and molecular pathways involved in regeneration. However, many questions remain about how regenerative processes unfold in regeneration-competent species, how they are curtailed in non-regenerative organisms, and how they might be induced (or restored) in humans. Recent technological advances in genomics, molecular biology, computer science, bioengineering, and stem cell research hold promise to collectively provide new experimental evidence for how different organisms accomplish the process of regeneration. In theory, this new evidence should inform the design of new clinical approaches for regenerative medicine. A deeper understanding of how tissues and organs regenerate will also undoubtedly impact many adjacent scientific fields. To best apply and adapt these new technologies in ways that break long-standing barriers and answer critical questions about regeneration, we must combine the deep knowledge of developmental and evolutionary biologists with the hard-earned expertise of scientists in mechanistic and technical fields. To this end, this perspective is based on conversations from a workshop we organized at the Banbury Center, during which a diverse cross-section of the regeneration research community and experts in various technologies discussed enduring questions in regenerative biology. Here, we share the questions this group identified as significant and unanswered, i.e., known unknowns. We also describe the obstacles limiting our progress in answering these questions and how expanding the number and diversity of organisms used in regeneration research is essential for deepening our understanding of regenerative capacity. Finally, we propose that investigating these problems collaboratively across a diverse network of researchers has the potential to advance our field and produce unexpected insights into important questions in related areas of biology and medicine.
基础研究有潜力揭示再生过程的内在机制,并产生有意义的医学疗法,这一潜力激发了科学家、临床医生和患者数百年来的兴趣。几十年来,利用少数几种高度再生的模式生物进行的研究极大地促进了我们对参与再生的关键细胞类型和分子途径的认识。然而,关于再生过程在有再生能力的物种中是如何展开的、在没有再生能力的生物中是如何受到限制的,以及如何在人类中诱导(或恢复)它们,仍有许多问题尚未得到解答。基因组学、分子生物学、计算机科学、生物工程和干细胞研究方面的最新技术进步有望共同为不同生物如何完成再生过程提供新的实验证据。从理论上讲,这一新证据应该为再生医学的新临床方法提供信息。对组织和器官再生方式的更深入了解无疑也将影响许多相邻的科学领域。为了最好地应用和调整这些新技术,以打破长期存在的障碍并回答有关再生的关键问题,我们必须将发育和进化生物学家的深厚知识与机制和技术领域科学家的宝贵专业知识结合起来。为此,本观点基于我们在班伯里中心组织的一次研讨会的讨论,在研讨会上,再生研究界的不同群体和各种技术的专家讨论了再生生物学中的持久问题。在这里,我们分享了小组确定为重要但未得到解答的问题,即已知的未知。我们还描述了限制我们回答这些问题的进展的障碍,以及如何扩大在再生研究中使用的生物的数量和多样性,对于加深我们对再生能力的理解至关重要。最后,我们提出,通过跨不同研究人员的多样化网络进行合作研究,有可能推进我们的领域,并为解决生物学和医学相关领域的重要问题提供意想不到的见解。