Suppr超能文献

用于高性能钾硫电池的改性硫阴极的分子钳策略

Molecular Clip Strategy of Modified Sulfur Cathodes for High-Performance Potassium Sulfur Batteries.

作者信息

Chen Tianyu, Min Zhiwen, Yu Zhenjiang, Zheng Mengting, Jiang Qingbin, Xu Huifang, Sun Yuanmiao, Hui Kwan San, Zha Chenyang, Lu Jun, Hui Kwun Nam

机构信息

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.

College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

出版信息

Adv Sci (Weinh). 2025 Mar;12(9):e2405457. doi: 10.1002/advs.202405457. Epub 2025 Jan 13.

Abstract

Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs). The as-prepared cathode exhibits a reversible capacity of 894.8 mAh g at a current rate of 0.5 C. It maintains a long cycle life of 1000 cycles with a stable coulombic efficiency in the potassium-sulfur cells without cathode catalysts. Operando XRD and Raman spectra combined with density functional theory (DFT) calculations, revealing the high efficiency of enhanced conversion of potassium polysulfide for high-performance K-S batteries.

摘要

钾硫(K-S)电池受到环辛硫(环-S)电极反应动力学缓慢且导电性低的严重限制,这迫切需要一种新型阴极来促进活性以提高硫的利用率。在本研究中,采用湿化学方法,制备了锂分子夹以取代环-S分子,得到具有高活性的链状S分子。分子夹策略有效降低了钾硫体系中的反应势垒,S─S键的拉伸削弱了硫原子之间的结合,促进了多硫化钾(KPSs)的转化。所制备的阴极在0.5 C电流速率下具有894.8 mAh g的可逆容量。在无阴极催化剂的钾硫电池中,它保持了1000次循环的长循环寿命和稳定的库仑效率。原位XRD和拉曼光谱结合密度泛函理论(DFT)计算,揭示了高性能K-S电池中多硫化钾增强转化的高效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ceef/11884556/4028ba4edf0a/ADVS-12-2405457-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验