Suppr超能文献

优化用于高性能钾硫电池的多硫化钾

Optimizing potassium polysulfides for high performance potassium-sulfur batteries.

作者信息

Song Wanqing, Yang Xinyi, Zhang Tao, Huang Zechuan, Wang Haozhi, Sun Jie, Xu Yunhua, Ding Jia, Hu Wenbin

机构信息

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, China.

School of Materials Science and Engineering, Hainan University, Haikou, China.

出版信息

Nat Commun. 2024 Feb 2;15(1):1005. doi: 10.1038/s41467-024-45405-w.

Abstract

Potassium-sulfur batteries attract tremendous attention as high-energy and low-cost energy storage system, but achieving high utilization and long-term cycling of sulfur remains challenging. Here we show a strategy of optimizing potassium polysulfides for building high-performance potassium-sulfur batteries. We design the composite of tungsten single atom and tungsten carbide possessing potassium polysulfide migration/conversion bi-functionality by theoretical screening. We create two ligand environments for tungsten in the metal-organic framework, which respectively transmute into tungsten single atom and tungsten carbide nanocrystals during pyrolysis. Tungsten carbide provide catalytic sites for potassium polysulfides conversion, while tungsten single atoms facilitate sulfides migration thereby significantly alleviating the insulating sulfides accumulation and the associated catalytic poisoning. Resultantly, highly efficient potassium-sulfur electrochemistry is achieved under high-rate and long-cycling conditions. The batteries deliver 89.8% sulfur utilization (1504 mAh g), superior rate capability (1059 mAh g at 1675 mA g) and long lifespan of 200 cycles at 25 °C. These advances enlighten direction for future KSBs development.

摘要

钾硫电池作为一种高能低成本的储能系统备受关注,但实现硫的高利用率和长期循环仍具有挑战性。在此,我们展示了一种优化多硫化钾以构建高性能钾硫电池的策略。通过理论筛选,我们设计了具有多硫化钾迁移/转化双功能的钨单原子与碳化钨复合材料。我们在金属有机框架中为钨创造了两种配体环境,它们在热解过程中分别转变为钨单原子和碳化钨纳米晶体。碳化钨为多硫化钾转化提供催化位点,而钨单原子促进硫化物迁移,从而显著减轻绝缘硫化物的积累及相关的催化中毒现象。结果,在高倍率和长循环条件下实现了高效的钾硫电化学性能。该电池在25℃下实现了89.8%的硫利用率(1504 mAh g)、优异的倍率性能(1675 mA g时为1059 mAh g)以及200次循环的长寿命。这些进展为未来钾硫电池的发展指明了方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验