Penzenstadler Marion, Intarak Narin, Kamnoedboon Porawit, Nantanapiboon Dusit, Suwanchaikasem Pipob, Porntaveetus Thantrira, Srinivasan Murali
Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich 8032, Switzerland.
Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
J Dent. 2025 Mar;154:105565. doi: 10.1016/j.jdent.2025.105565. Epub 2025 Jan 11.
This study aimed to investigate the resin compounds from CAD-CAM 3D-printed denture resins, focusing on the identification and classification of free monomers and other components. The primary objective was to determine the chemical profile of these 3D-prinding resin materials.
Four 3D-printed denture resins, two base materials (1: DentaBASE, Asiga Ltd., Alexandria, NSW, Australia; 2: DENTURETEC, SAREMCO Dental AG), and two tooth-colored materials (1: DentaTOOTH, Asiga Ltd.; 2: CROWNTEC (SAREMCO Dental AG), were analyzed using high-performance liquid chromatography and mass spectrometry (HPLC-MS). Data analysis was processed including peak alignment and normalization to an ethanol blank, resulting in detailed identification of compounds in the resin.
Out of 5,208 detected compounds in the resin, 63 were retained after applying filtering criteria for further analysis, categorized into methyl methacrylate (MMA) and derivatives (31), photo initiators (8), UV stabilizers (1), and other additives (23). Sample 2B exhibited the highest number of resin compounds (62), including the most MMA derivatives and additives. MMA accounted for over 69% in abundance across samples, with unique additives such as ethyl-4-dimethylaminobenzoate and bis(acryloyloxymethyl) tricyclo[5.2.1.02,6] decane (TCD-DI-HEA) identified. Variations in the resin composition distribution and abundance highlighted differences in resin formulations.
Within the limits of this in vitro, exploratory study, unpolymerized 3D-printed denture resins were analyzed, and various resin compounds in 3D-printed denture resins, including MMA, photo initiators, UV stabilizers, and additives, were identified along with significant variability between samples. While 3D-printing enhances efficiency and customization, further investigation is needed to better understand and assess the long-term intraoral effects and their effectiveness in complete dentures.
This study provides insights into the chemical composition of 3D-printed denture resins, highlighting variability in resin compound profiles. Understanding these materials is essential for ensuring biocompatibility and performance. The findings support the need for further research and standardized testing to guide clinicians in the safe and effective use of 3D-printed dentures.
本研究旨在调查计算机辅助设计与制造(CAD-CAM)3D打印义齿树脂中的树脂化合物,重点是游离单体和其他成分的鉴定与分类。主要目的是确定这些3D打印树脂材料的化学特征。
使用高效液相色谱和质谱(HPLC-MS)对四种3D打印义齿树脂、两种基托材料(1:DentaBASE,Asiga有限公司,澳大利亚新南威尔士州亚历山德里亚;2:DENTURETEC,SAREMCO Dental AG)和两种牙色材料(1:DentaTOOTH,Asiga有限公司;2:CROWNTEC(SAREMCO Dental AG))进行分析。数据分析包括峰对齐和以乙醇空白进行归一化处理,从而详细鉴定树脂中的化合物。
在树脂中检测到的5208种化合物中,应用筛选标准后保留了63种以供进一步分析,分为甲基丙烯酸甲酯(MMA)及其衍生物(31种)、光引发剂(8种)、紫外线稳定剂(1种)和其他添加剂(23种)。样品2B的树脂化合物数量最多(62种),包括最多的MMA衍生物和添加剂。MMA在所有样品中的含量超过69%,还鉴定出了独特的添加剂,如4-二甲基氨基苯甲酸乙酯和双(丙烯酰氧基甲基)三环[5.2.1.02,6]癸烷(TCD-DI-HEA)。树脂成分分布和含量的差异突出了树脂配方的不同。
在这项体外探索性研究的范围内,对未聚合的3D打印义齿树脂进行了分析,鉴定出了3D打印义齿树脂中的各种树脂化合物,包括MMA、光引发剂、紫外线稳定剂和添加剂,同时样品之间存在显著差异。虽然3D打印提高了效率和定制性,但需要进一步研究以更好地理解和评估其在全口义齿中的长期口腔内影响及其有效性。
本研究提供了对3D打印义齿树脂化学成分的见解,突出了树脂化合物谱的变异性。了解这些材料对于确保生物相容性和性能至关重要。研究结果支持进一步研究和标准化测试的必要性,以指导临床医生安全有效地使用3D打印义齿。