Suppr超能文献

采用基于片段和生物电子等排体替换方法设计和鉴定三阴性乳腺癌PI3Kα抑制剂时探索靶点选择性

Exploring target selectivity in designing and identifying PI3Kα inhibitors for triple negative breast cancer with fragment-based and bioisosteric replacement approach.

作者信息

Halder Debojyoti, Mukherjee Shreya, Jeyaprakash R S

机构信息

Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.

出版信息

Sci Rep. 2025 Jan 13;15(1):1890. doi: 10.1038/s41598-024-83030-1.

Abstract

Triple-negative breast cancer (TNBC) is one of the most fatal malignancies in the world, accounting for 42% of all deaths due to metastasis. The significant development is hindered by the multi-drug resistance and poor patient compliance. PIK3CA gene mutation is one of the important causes of TNBC, which causes dysregulation of the cell cycle and cell proliferation. PI3Kα selective inhibition can decrease the TNBC by a significant level with minimal off-target effects. Novel compounds with high selectivity towards PI3Kα are crucial for treating TNBC. After extensive literature analysis, it was observed that fragment-based drug discovery, combined with structure-based virtual screening and bioisosteric replacement strategy, could provide a novel way for hit-to-lead optimization. The present study focussed on the fragment-based direct linking of 11269 moieties of the ChemDiv fragment library, - to generate novel moieties and further screened them using molecular docking, MMGBSA, and target selectivity analysis. Further, the top 2 moieties - Djh1 and Djh2 were selected after MMGBSA analysis and target selectivity prediction towards kinase. Further induced fit docking (IFD) analysis, DFT analysis, and MD simulation were employed to establish that - Djh1 and Djh2 could act as potential hit molecules for selective inhibition of PI3Kα. Further bioisosteric replacement, docking analysis, and target selectivity analysis were performed with the bioisosteres. The top two bioisosteres of Djh1 - Compound 10, Compound 06 represented excellent efficacy and selectivity towards PI3Kα in the treatment of TNBC after analysis of ADMET analysis. Further, in vitro and in vivo analysis might prove the effectiveness of the hit compounds.

摘要

三阴性乳腺癌(TNBC)是世界上最致命的恶性肿瘤之一,占所有因转移导致死亡病例的42%。多药耐药性和患者依从性差阻碍了其显著进展。PIK3CA基因突变是TNBC的重要病因之一,它会导致细胞周期和细胞增殖失调。PI3Kα选择性抑制可在将脱靶效应降至最低的情况下显著降低TNBC水平。对PI3Kα具有高选择性的新型化合物对于治疗TNBC至关重要。经过广泛的文献分析发现,基于片段的药物发现,结合基于结构的虚拟筛选和生物电子等排体替代策略,可为从苗头化合物到先导化合物的优化提供新途径。本研究聚焦于ChemDiv片段库中11269个片段的基于片段的直接连接,以生成新型片段,并使用分子对接、MMGBSA和靶点选择性分析对其进一步筛选。此外,在MMGBSA分析和针对激酶的靶点选择性预测后,选择了前两个片段——Djh1和Djh2。进一步采用诱导契合对接(IFD)分析、密度泛函理论(DFT)分析和分子动力学(MD)模拟来确定Djh1和Djh2可作为选择性抑制PI3Kα的潜在苗头分子。使用生物电子等排体进行了进一步的生物电子等排体替代、对接分析和靶点选择性分析。在进行ADMET分析后,Djh1的前两个生物电子等排体——化合物10、化合物06在治疗TNBC方面对PI3Kα表现出优异的疗效和选择性。此外,体外和体内分析可能会证明这些苗头化合物的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06c4/11729857/0ddc8df5596d/41598_2024_83030_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验