Suppr超能文献

基于片段的新型冠状病毒3C样蛋白酶抑制剂设计

Fragment-based design of SARS-CoV-2 Mpro inhibitors.

作者信息

Teli Divya M, Patel Bansari, Chhabria Mahesh T

机构信息

Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009 Gujarat India.

出版信息

Struct Chem. 2022;33(6):2155-2168. doi: 10.1007/s11224-022-02031-w. Epub 2022 Aug 24.

Abstract

The SARS-CoV-2 virus has been identified as a causative agent for COVID-19 pandemic. About more than 6.3 million fatalities have been attributed to COVID-19 worldwide to date. Finding a viable cure for the illness is urgently needed in light of the present pandemic. The prominence of main protease in the life cycle of virus shapes the main protease as a viable target for design and development of antiviral agents to combat COVID-19. The current study presents the fragment linking strategy to design the novel Mpro inhibitors for COVID-19. A total of 293,451 fragments from diversified libraries have been screened for their binding affinity towards Mpro enzyme. The best 1600 fragment hits were subjected to fragment joining to achieve 100 new molecules using Schrödinger software. The resulting molecules were further screened for their Mpro binding affinity, ADMET, and drug-likeness features. The best 13 molecules were selected, and the first 6 compounds were investigated for their ligand-receptor complex stability through a molecular dynamics study using GROMACS software. The resulting molecules have the potential to be further evaluated for COVID-19 drug discovery.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)已被确认为2019冠状病毒病(COVID-19)大流行的病原体。截至目前,全球已有超过630万人死于COVID-19。鉴于当前的大流行情况,迫切需要找到一种可行的治疗方法。主要蛋白酶在病毒生命周期中的重要性使其成为设计和开发对抗COVID-19抗病毒药物的可行靶点。当前的研究提出了片段连接策略,以设计用于COVID-19的新型Mpro抑制剂。从多样化的文库中总共筛选了293451个片段,以检测它们对Mpro酶的结合亲和力。对最佳的1600个片段命中物进行片段连接,使用薛定谔软件获得100个新分子。对所得分子进一步筛选其Mpro结合亲和力、药物代谢动力学(ADMET)和类药性质。选择了最佳的13个分子,并通过使用GROMACS软件进行分子动力学研究,对前6种化合物的配体-受体复合物稳定性进行了研究。所得分子有潜力进一步用于COVID-19药物研发的评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b721/9399563/775aeb2449c4/11224_2022_2031_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验