Suppr超能文献

基于层次图的集成网络用于社交媒体文本新闻文章中的宣传检测。

Hierarchical graph-based integration network for propaganda detection in textual news articles on social media.

作者信息

Ahmad Pir Noman, Guo Jiequn, AboElenein Nagwa M, Haq Qazi Mazhar Ul, Ahmad Sadique, Algarni Abeer D, A Ateya Abdelhamied

机构信息

Ningbo China Institute for Supply Chain Innovation, MIT Global SCALE Network, Ningbo, 315832, China.

Jiangxi University of Finance and Economics, Nanchang, 330013, Jiangxi, China.

出版信息

Sci Rep. 2025 Jan 13;15(1):1827. doi: 10.1038/s41598-024-74126-9.

Abstract

During the Covid-19 pandemic, the widespread use of social media platforms has facilitated the dissemination of information, fake news, and propaganda, serving as a vital source of self-reported symptoms related to Covid-19. Existing graph-based models, such as Graph Neural Networks (GNNs), have achieved notable success in Natural Language Processing (NLP). However, utilizing GNN-based models for propaganda detection remains challenging because of the challenges related to mining distinct word interactions and storing nonconsecutive and broad contextual data. In this study, we propose a Hierarchical Graph-based Integration Network (H-GIN) designed for detecting propaganda in text within a defined domain using multilabel classification. H-GIN is extracted to build a bi-layer graph inter-intra-channel, such as Residual-driven Enhancement and Processing (RDEP) and Attention-driven Multichannel feature Fusing (ADMF) with suitable labels at two distinct classification levels. First, RDEP procedures facilitate information interactions between distant nodes. Second, by employing these guidelines, ADMF standardizes the Tri-Channels 3-S (sequence, semantic, and syntactic) layer, enabling effective propaganda detection through related and unrelated information propagation of news representations into a classifier from the existing ProText, Qprop, and PTC datasets, thereby ensuring its availability to the public. The H-GIN model demonstrated exceptional performance, achieving an impressive 82% accuracy and surpassing current leading models. Notably, the model's capacity to identify previously unseen examples across diverse openness scenarios at 82% accuracy using the ProText dataset was particularly significant.

摘要

在新冠疫情期间,社交媒体平台的广泛使用促进了信息、假新闻和宣传内容的传播,成为自我报告的与新冠相关症状的重要来源。现有的基于图的模型,如图神经网络(GNN),在自然语言处理(NLP)方面取得了显著成功。然而,由于挖掘不同单词交互以及存储非连续和广泛上下文数据方面存在挑战,利用基于GNN的模型进行宣传检测仍然具有挑战性。在本研究中,我们提出了一种基于层次图的集成网络(H-GIN),旨在使用多标签分类检测特定领域内文本中的宣传内容。H-GIN被提取出来构建一个双层图内-通道,例如残差驱动增强与处理(RDEP)和注意力驱动多通道特征融合(ADMF),在两个不同的分类级别上带有合适的标签。首先,RDEP过程促进远距离节点之间的信息交互。其次,通过采用这些指导方针,ADMF对三通道3-S(序列、语义和句法)层进行标准化,通过将新闻表示的相关和不相关信息传播到现有ProText、Qprop和PTC数据集中的分类器中,实现有效的宣传检测,从而确保其对公众的可用性。H-GIN模型表现出卓越的性能,准确率达到了令人印象深刻的82%,超过了当前的领先模型。值得注意的是,该模型使用ProText数据集在82%的准确率下识别不同开放场景中以前未见过的示例的能力尤为显著。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4106/11730963/952f5cd9fa71/41598_2024_74126_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验