Suppr超能文献

在真实的工业4.0环境中进行多机器人任务分配的生产调度

Production scheduling with multi-robot task allocation in a real industry 4.0 setting.

作者信息

Shakeri Zohreh, Benfriha Khaled, Varmazyar Mohsen, Talhi Esma, Quenehen Anthony

机构信息

Laboratoire Conception de Produits et Innovation (LCPI), Arts et Metiers Institute of Technology, 75013, Paris, France.

Department of Industrial Engineering, Shairf University of Technology, Tehran, 11155-9161, Iran.

出版信息

Sci Rep. 2025 Jan 13;15(1):1795. doi: 10.1038/s41598-024-84240-3.

Abstract

The demand for efficient Industry 4.0 systems has driven the need to optimize production systems, where effective scheduling is crucial. In smart manufacturing, robots handle material transfers, making precise scheduling essential for seamless operations. However, research often oversimplifies the Robotic Flexible Job Shop problem by focusing only on transportation time, ignoring resource allocation and robot diversity. This study addresses these gaps, tackling a Multi-Robot Flexible Job Shop (MRFJS) scheduling problem with limited buffers. It involves non-identical parallel machines and robots with varying capabilities overseeing material handling under blocking conditions. The case study is based on a real Industry 4.0 scenario, where the layout restricts each robotic arm's access, requiring strategic buffer placement for part transfers. A Mixed-Integer Programming (MILP) model aims to minimize makespan, followed by a new Genetic Algorithm (GA) using Roy and Sussman's Alternative Graph. Computational tests on various scales and real data from a manufacturing plant demonstrate the GA's efficacy in solving complex scheduling problems in real-world production settings. Based on the data, the Proposed Genetic Algorithm (PGA), with an average Relative Deviation (ARD) of 0.25%, performed approximately 34% better compared to the Basic Genetic Algorithm (BGA), with an average ARD of 0.38%. This percentage indicates that the PGA significantly outperforms in solving complex scheduling problems.

摘要

对高效的工业4.0系统的需求推动了优化生产系统的必要性,其中有效的调度至关重要。在智能制造中,机器人负责物料转移,因此精确调度对于无缝操作至关重要。然而,研究往往仅关注运输时间,从而过度简化了机器人柔性作业车间问题,而忽略了资源分配和机器人多样性。本研究弥补了这些不足,解决了具有有限缓冲区的多机器人柔性作业车间(MRFJS)调度问题。它涉及不同的并行机器和能力各异的机器人,在阻塞条件下监督物料搬运。案例研究基于一个真实的工业4.0场景,其中布局限制了每个机器人手臂的访问,需要为零件转移进行战略性缓冲区布局。一个混合整数规划(MILP)模型旨在最小化完工时间,随后是一种使用Roy和Sussman替代图的新型遗传算法(GA)。对各种规模的计算测试以及来自制造工厂的真实数据表明,GA在解决实际生产环境中的复杂调度问题方面具有有效性。基于这些数据,所提出的遗传算法(PGA)的平均相对偏差(ARD)为0.25%,与平均ARD为0.38%的基本遗传算法(BGA)相比,性能提高了约34%。这个百分比表明PGA在解决复杂调度问题方面明显更胜一筹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/559f/11729899/41bd4865f515/41598_2024_84240_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验