Suppr超能文献

基于改进算术优化算法的用于建筑电气化的含燃料电池混合系统的混合随机与鲁棒优化

Hybrid stochastic and robust optimization of a hybrid system with fuel cell for building electrification using an improved arithmetic optimization algorithm.

作者信息

Duan Fude, Eslami Mahdiyeh, Okati Mustafa, Jasim Dheyaa J, Mahmood Arsalan Khadim

机构信息

School of Intelligent Transportation, Nanjing Vocational College of Information Technology, Nanjing, 210000, Jiangsu, China.

Electrical Engineering Department, Kerman Branch, Islamic Azad University, Kerman, Iran.

出版信息

Sci Rep. 2025 Jan 13;15(1):1779. doi: 10.1038/s41598-025-86074-z.

Abstract

This paper proposes a hybrid stochastic-robust optimization framework for sizing a photovoltaic/tidal/fuel cell (PV/TDL/FC) system to meet an annual educational building demand based on hydrogen storage via unscented transformation (UT), and information gap decision theory-based risk-averse strategy (IGDT-RA). The hybrid framework integrates the strengths of UT for scenario generation and IGDT-RA (hybrid UT-IGDT-RA) for optimizing the system robustness and maximum uncertainty radius (MRU) of building energy demand and renewable resource generation. The deterministic model focuses on minimizing the cost of energy production over the project's lifespan (CEPLS) and considers a reliability constraint defined as the demand shortage probability (DSHP). The study utilizes an improved arithmetic optimization algorithm (IAOA) to optimize component sizes and MRUs, incorporating a neighborhood search operator to enhance performance and prevent premature convergence. The deterministic findings revealed that the PV/TDL/FC system configuration offers the lowest CEPLS and the highest reliability level (lowest DSHP) compared to the hybrid PV/FC and TDL/FC configurations. Additionally, these results indicated that enhancing the reliability of the energy supply for the educational building entails higher CEPLS, particularly due to increased costs associated with hydrogen storage. The robust framework findings for the PV/TDL/FC system using IGDT-RA show that for an uncertainty budget of 21%, the MRUs for educational building demand and renewable generation are obtained at 10.34% and 2.65%, respectively, which are higher compared to other configurations. This indicates that the hybrid PV/TDL/FC system is more robust in handling worst-case scenario uncertainties. Furthermore, the hybrid UT-IGDT-RA outcomes found that the stochastic scenarios incorporated to simulate a range of uncertainties beyond the conventional IGDT-RA based-nominal scenario, and it provides a broader range of robust solutions, enabling operators to align strategies with their risk tolerance and improves system flexibility, and decision-making precision in the face of uncertainties.

摘要

本文提出了一种混合随机-鲁棒优化框架,用于确定光伏/潮汐/燃料电池(PV/TDL/FC)系统的规模,以满足基于储氢的年度教育建筑需求,该框架通过无迹变换(UT)和基于信息间隙决策理论的风险规避策略(IGDT-RA)实现。该混合框架整合了UT生成场景的优势以及IGDT-RA(混合UT-IGDT-RA)优化系统鲁棒性和建筑能源需求与可再生资源发电的最大不确定性半径(MRU)的优势。确定性模型专注于在项目寿命期内将能源生产成本(CEPLS)降至最低,并考虑了定义为需求短缺概率(DSHP)的可靠性约束。该研究利用改进的算术优化算法(IAOA)来优化组件尺寸和MRU,纳入邻域搜索算子以提高性能并防止过早收敛。确定性结果表明,与混合PV/FC和TDL/FC配置相比,PV/TDL/FC系统配置的CEPLS最低且可靠性水平最高(DSHP最低)。此外,这些结果表明,提高教育建筑能源供应的可靠性会导致CEPLS升高,特别是由于储氢成本增加。使用IGDT-RA的PV/TDL/FC系统的鲁棒框架结果表明,对于21%的不确定性预算,教育建筑需求和可再生能源发电的MRU分别为10.34%和2.65%,与其他配置相比更高。这表明混合PV/TDL/FC系统在处理最坏情况不确定性方面更强健。此外,混合UT-IGDT-RA结果发现,纳入的随机场景模拟了超出基于传统IGDT-RA的标称场景的一系列不确定性,并且它提供了更广泛的鲁棒解决方案,使运营商能够根据其风险承受能力调整策略,并提高面对不确定性时的系统灵活性和决策精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ac/11730306/b27f64f8dda6/41598_2025_86074_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验