Zhu Zhigao, Wang Xiaohui, Zhou Yujun, Qi Junwen, Yang Yue, Wang Wei, Li Jiansheng
Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China.
ACS Nano. 2025 Feb 11;19(5):5577-5588. doi: 10.1021/acsnano.4c15010. Epub 2025 Jan 13.
Thermally driven membrane desalination processes have garnered significant interest for their potential in the treatment of hypersaline wastewater. However, achieving high rejection rates for volatiles while maintaining a high water flux remains a considerable challenge. Herein, we propose a thermo-osmosis-evaporation (TOE) system that utilizes molecular intercalation-regulated graphene oxide (GO) as the thermo-osmotic selective permeation layer, positioned on a hydrophobic poly(vinylidene fluoride) fibrous membrane serving as the thermo-evaporation layer. By carefully constructing architectural interlaminar nanochannels of GO membranes via simultaneously confining small molecules to enlarge the interlayer spacing and incorporating polymers within the GO interlayers to create a dense network, the resultant demonstrates a rejection rate of 100% for NaCl and 97.41% for volatile phenylamine, with a water permeance of 63.80 L m h at a temperature difference of 40 °C, outperforming previously reported GO-based membranes. Simulation and calculation results reveal that the polymer network between the GO interlayers facilitates the high-efficiency separation of nonvolatile ions and volatile molecules, while the enlarged channels reduce vapor diffusion resistance. This study provides valuable insights for the design of advanced membranes and serves as inspiration for the continued development of the TOE system for complex hypersaline wastewater treatment.
热驱动膜脱盐工艺因其在高盐废水处理方面的潜力而备受关注。然而,在保持高水通量的同时实现对挥发性物质的高截留率仍然是一个巨大的挑战。在此,我们提出了一种热渗透蒸发(TOE)系统,该系统利用分子插层调控的氧化石墨烯(GO)作为热渗透选择性渗透层,置于作为热蒸发层的疏水性聚偏氟乙烯纤维膜上。通过同时限制小分子以扩大层间距并在GO层间引入聚合物以形成致密网络,精心构建GO膜的层间纳米通道,所得产物对NaCl的截留率为100%,对挥发性苯胺的截留率为97.41%,在40℃的温差下透水率为63.80 L m⁻² h⁻¹,优于先前报道的基于GO的膜。模拟和计算结果表明,GO层间的聚合物网络有助于非挥发性离子和挥发性分子的高效分离,而扩大的通道降低了蒸汽扩散阻力。本研究为先进膜的设计提供了有价值的见解,并为继续开发用于复杂高盐废水处理的TOE系统提供了灵感。