Yu Jieyu, Chen Chengwei, Lu Mingzhi, Fang Xu, Li Jing, Zhu Mengmeng, Li Na, Yuan Xiaohan, Han Yaxing, Wang Li, Lu Jianping, Shao Chengwei, Bian Yun
Department of Radiology, Changhai Hospital.
Department of Oncology Radiation, Changhai Hospital.
Int J Surg. 2024 Dec 1;110(12):7656-7670. doi: 10.1097/JS9.0000000000001604.
Extrapancreatic perineural invasion (EPNI) increases the risk of postoperative recurrence in pancreatic ductal adenocarcinoma (PDAC). This study aimed to develop and validate a computed tomography (CT)-based, fully automated preoperative artificial intelligence (AI) model to predict EPNI in patients with PDAC.
The authors retrospectively enrolled 1065 patients from two Shanghai hospitals between June 2014 and April 2023. Patients were split into training (n=497), internal validation (n=212), internal test (n=180), and external test (n=176) sets. The AI model used perivascular space and tumor contact for EPNI detection. The authors evaluated the AI model's performance based on its discrimination. Kaplan-Meier curves, log-rank tests, and Cox regression were used for survival analysis.
The AI model demonstrated superior diagnostic performance for EPNI with 1-pixel expansion. The area under the curve in the training, validation, internal test, and external test sets were 0.87, 0.88, 0.82, and 0.83, respectively. The log-rank test revealed a significantly longer survival in the AI-predicted EPNI-negative group than the AI-predicted EPNI-positive group in the training, validation, and internal test sets (P<0.05). Moreover, the AI model exhibited exceptional prognostic stratification in early PDAC and improved assessment of neoadjuvant therapy's effectiveness.
The AI model presents a robust modality for EPNI diagnosis, risk stratification, and neoadjuvant treatment guidance in PDAC, and can be applied to guide personalized precision therapy.
胰腺外神经周围侵犯(EPNI)会增加胰腺导管腺癌(PDAC)术后复发的风险。本研究旨在开发并验证一种基于计算机断层扫描(CT)的全自动术前人工智能(AI)模型,以预测PDAC患者的EPNI。
作者回顾性纳入了2014年6月至2023年4月期间来自上海两家医院的1065例患者。患者被分为训练集(n = 497)、内部验证集(n = 212)、内部测试集(n = 180)和外部测试集(n = 176)。该AI模型利用血管周围间隙和肿瘤接触情况来检测EPNI。作者基于该AI模型的辨别力评估其性能。采用Kaplan-Meier曲线、对数秩检验和Cox回归进行生存分析。
该AI模型在进行1像素扩展时对EPNI表现出卓越的诊断性能。训练集、验证集、内部测试集和外部测试集的曲线下面积分别为0.87、0.88、0.82和0.83。对数秩检验显示,在训练集、验证集和内部测试集中,AI预测的EPNI阴性组的生存期显著长于AI预测的EPNI阳性组(P<0.05)。此外,该AI模型在早期PDAC中表现出出色的预后分层能力,并改善了对新辅助治疗效果的评估。
该AI模型为PDAC的EPNI诊断、风险分层和新辅助治疗指导提供了一种强大的方法,可用于指导个性化精准治疗。