Sun Haopan, Gan Ning, Lin Yuqing, Wu Baolong, Qiu Yulong, Su Jingwen, Zhou Ziding, Zou Fengyin, Yu Jianguo, Matsuyama Hideto
National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe, 6500034, Japan.
Adv Sci (Weinh). 2025 Mar;12(9):e2414280. doi: 10.1002/advs.202414280. Epub 2025 Jan 14.
Membrane technology holds significant potential for the recovery of acids and alkalis from industrial wastewater systems, with ion exchange membranes (IEMs) playing a crucial role in these applications. However, conventional IEMs are limited to separating only monovalent cations or anions, presenting a significant challenge in achieving concomitant H⁺/OH⁻ permselectivity for simultaneous acid and alkali recovery. To address this issue, the charged microporous polymer framework membranes are developed, featuring rigid Tröger's Base network chains constructed through a facile sol-gel process. The intrinsic ultramicropore confinement and quaternary ammonium-charged functional groups provide ultrahigh size-sieving capability and enhanced Donnan exclusion for H⁺/OH⁻ selectivity; meanwhile, the internal protoplasmic channels of the polymer frameworks serve as highways for rapid ion transfer. The resulting membrane achieves high H⁺/Fe⁺ and OH⁻/WO₄⁻ selectivities of 694.4 and 181.0, respectively, for concurrent acid and alkali separation in diffusion dialysis and electrodialysis processes over extended operational periods (exceeding 1600 and 600 h, respectively), while maintaining remarkable transport rates. These results outperform most literature-reported and nearly all commercially available membranes. This study validates the novel applicability of polymer framework materials with ionized angstrom-scale channels and versatile functionalities in high-performance IEMs for acid/alkali resource recovery.
膜技术在从工业废水系统中回收酸和碱方面具有巨大潜力,离子交换膜(IEMs)在这些应用中起着关键作用。然而,传统的离子交换膜仅限于分离单价阳离子或阴离子,在实现同时回收酸和碱所需的H⁺/OH⁻选择透过性方面面临重大挑战。为了解决这个问题,人们开发了带电荷的微孔聚合物骨架膜,其具有通过简便的溶胶 - 凝胶工艺构建的刚性特罗格碱网络链。固有的超微孔限制和季铵化带电官能团提供了超高的尺寸筛分能力和增强的唐南排斥作用,以实现H⁺/OH⁻选择性;同时,聚合物骨架的内部原生质通道充当快速离子转移的通道。所得的膜在扩散渗析和电渗析过程中,对于同时进行的酸碱分离,在较长的运行时间(分别超过1600小时和600小时)内,分别实现了高达694.4和181.0的高H⁺/Fe⁺和OH⁻/WO₄⁻选择性,同时保持了显著的传输速率。这些结果优于大多数文献报道的以及几乎所有市售的膜。这项研究验证了具有电离埃级通道和多功能性的聚合物骨架材料在用于酸/碱资源回收的高性能离子交换膜中的新颖适用性。