Suppr超能文献

探究胃癌预后转录本的低氧和干性联合指数:机器学习与网络分析方法

Investigating combined hypoxia and stemness indices for prognostic transcripts in gastric cancer: Machine learning and network analysis approaches.

作者信息

Mahmoudian-Hamedani Sharareh, Lotfi-Shahreza Maryam, Nikpour Parvaneh

机构信息

Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Department of Computer Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran.

出版信息

Biochem Biophys Rep. 2024 Dec 19;41:101897. doi: 10.1016/j.bbrep.2024.101897. eCollection 2025 Mar.

Abstract

INTRODUCTION

Gastric cancer (GC) is among the deadliest malignancies globally, characterized by hypoxia-driven pathways that promote cancer progression, including stemness mechanisms facilitating invasion and metastasis. This study aimed to develop a prognostic decision tree using genes implicated in hypoxia and stemness pathways to predict outcomes in GC patients.

MATERIALS AND METHODS

GC RNA-seq data from The Cancer Genome Atlas (TCGA) were analyzed to compute hypoxia and stemness scores using Gene Set Variation Analysis (GSVA) and the mRNA expression-based stemness index (mRNAsi). Hierarchical clustering identified clusters with distinct survival outcomes, and differentially expressed genes (DEGs) between clusters were identified. Weighted Gene Co-expression Network Analysis (WGCNA) identified modules and hub genes associated with clinical traits. Overlapping DEGs and hub genes underwent functional enrichment, protein-protein interaction (PPI) network analysis, and survival analysis. A prognostic decision tree was constructed using survival-associated shared genes.

RESULTS

Hierarchical clustering identified six clusters among 375 TCGA GC patients, with significant survival differences between cluster 1 (low hypoxia, high stemness) and cluster 4 (high hypoxia, high stemness). Validation in the GSE62254 dataset corroborated these findings. WGCNA revealed modules linked to clinical traits and survival, with functional enrichment highlighting pathways like cell adhesion and calcium signaling. The decision tree, based on genes such as , , and , achieved an AUC of 0.81 (training) and 0.67 (test), demonstrating the utility of combined scores in patient stratification.

CONCLUSION

This study introduces a novel hypoxia-stemness-based prognostic decision tree for GC. The identified genes show promise as prognostic biomarkers, warranting further clinical validation.

摘要

引言

胃癌(GC)是全球最致命的恶性肿瘤之一,其特征是由缺氧驱动的促进癌症进展的途径,包括促进侵袭和转移的干性机制。本研究旨在利用与缺氧和干性途径相关的基因开发一种预后决策树,以预测GC患者的预后。

材料与方法

分析来自癌症基因组图谱(TCGA)的GC RNA测序数据,使用基因集变异分析(GSVA)和基于mRNA表达的干性指数(mRNAsi)计算缺氧和干性评分。层次聚类识别出具有不同生存结果的簇,并识别簇之间的差异表达基因(DEG)。加权基因共表达网络分析(WGCNA)识别与临床特征相关的模块和枢纽基因。对重叠的DEG和枢纽基因进行功能富集、蛋白质-蛋白质相互作用(PPI)网络分析和生存分析。使用与生存相关的共享基因构建预后决策树。

结果

层次聚类在375例TCGA GC患者中识别出六个簇,簇1(低缺氧,高干性)和簇4(高缺氧,高干性)之间存在显著的生存差异。在GSE62254数据集中的验证证实了这些发现。WGCNA揭示了与临床特征和生存相关的模块,功能富集突出了细胞粘附和钙信号等途径。基于、和等基因的决策树在训练集的AUC为0.81,在测试集的AUC为0.67,表明综合评分在患者分层中的效用。

结论

本研究为GC引入了一种基于缺氧-干性的新型预后决策树。所识别的基因有望作为预后生物标志物,值得进一步的临床验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfe9/11729012/3b720c172c3e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验