Mittal Sumit, Wang Rongsheng E, Ros Robert, Ondrus Alison E, Singharoy Abhishek
School of Advanced Sciences and Languages, VIT Bhopal University, Kothrikalan, Sehore, Madhya Pradesh, 466114, India.
Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
Heliyon. 2024 Dec 12;11(1):e41178. doi: 10.1016/j.heliyon.2024.e41178. eCollection 2025 Jan 15.
Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore. These sensors are characterized using a multiscale approach combining equilibrium and steered QM/MM molecular dynamics models to capture the chemical, mechanical, and conformational transitions underlying force activation thresholds on a nano Newton scale. We find that chemical modification of the mechanophore and variation of its biomolecular tethers can tune the rate-determining step for fluorophore release and adjust the mechanochemical activation barrier. The models offer a new molecular framework for calibrated, programmable biomolecular force reporting within the live-cell regime, opening new opportunities to study mechanical phenomena in biological systems.
细胞力调节着无数的生命过程,如细胞迁移、基因表达和离子传导。然而,由于缺乏通用的活细胞工具来测量生物分子之间的离散力,对机械控制的定量描述仍然难以捉摸。在这里,我们介绍了一种用于力测量的计算流程,该流程利用机械激活的小分子荧光团的明确定义、可调节释放。这些传感器使用多尺度方法进行表征,该方法结合了平衡和引导QM/MM分子动力学模型,以在纳牛顿尺度上捕获力激活阈值背后的化学、机械和构象转变。我们发现,机械发色团的化学修饰及其生物分子连接体的变化可以调节荧光团释放的速率决定步骤,并调整机械化学激活屏障。这些模型为活细胞状态下的校准、可编程生物分子力报告提供了一个新的分子框架,为研究生物系统中的机械现象开辟了新的机会。