Davoudi Samaneh, Vainikka Petteri A, Marrink Siewert J, Ghysels An
IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.
Centre for Analysis and Synthesis, Lund University, Naturvetarvägen 22/Sölvegatan 39 A, 223 62 Lund, Sweden.
J Chem Theory Comput. 2025 Jan 14;21(1):428-439. doi: 10.1021/acs.jctc.4c01348. Epub 2024 Dec 30.
Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins. To reach larger length scales with models, such as curved membranes in mitochondria or caveolae, coarse-grained (CG) simulations could be used at much lower computational cost than AA simulations. Yet a CG model for O is lacking. In this work, a CG model for O is therefore carefully selected from the Martini 3 force field based on criteria including size, zero charge, nonpolarity, solubility in nonpolar organic solvents, and partitioning in a phospholipid membrane. This chosen CG model for O (TC3 bead) is then further evaluated through the calculation of its diffusion constant in water and hexadecane, its permeability rate across pure phospholipid- and cholesterol-containing membranes, and its binding to the T4 lysozyme L99A protein. Our CG model shows semiquantitative agreement between CG diffusivity and permeation rates with the corresponding AA values and available experimental data. Additionally, it captures the binding to hydrophobic cavities of the protein, aligning well with the AA simulation of the same system. Thus, the results show that our O model approximates the behavior observed in the AA simulations. The CG O model is compatible with the widely used multifunctional Martini 3 force field for biological simulations, which will allow for the simulation of large biomolecular systems involved in O's transport in the body.
分子氧(O)对生命至关重要,人们一直在不断努力,通过全原子(AA)分子动力学(MD)模拟,例如膜渗透或与蛋白质结合,来了解其在细胞呼吸中的途径。为了用模型达到更大的长度尺度,比如线粒体或小窝中的弯曲膜,粗粒度(CG)模拟的计算成本比AA模拟低得多。然而,目前还缺乏用于O的CG模型。因此,在这项工作中,基于包括大小、零电荷、非极性、在非极性有机溶剂中的溶解性以及在磷脂膜中的分配等标准,从Martini 3力场中精心挑选了一个用于O的CG模型。然后,通过计算其在水和十六烷中的扩散常数、在纯磷脂膜和含胆固醇膜上的渗透率以及与T4溶菌酶L99A蛋白的结合,对这个选定的用于O的CG模型(TC3珠子)进行了进一步评估。我们的CG模型在CG扩散率和渗透率与相应的AA值及现有实验数据之间显示出半定量的一致性。此外,它捕捉到了与蛋白质疏水腔的结合,与同一系统的AA模拟结果吻合良好。因此,结果表明我们的O模型近似于AA模拟中观察到的行为。该CG O模型与广泛用于生物模拟的多功能Martini 3力场兼容,这将允许对参与O在体内运输的大型生物分子系统进行模拟。