Suppr超能文献

用于溶菌酶疏水电荷诱导色谱分子动力学模拟的马蒂尼力场的修正。

Modification of Martini force field for molecular dynamics simulation of hydrophobic charge induction chromatography of lysozyme.

机构信息

Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, Nankai District, China.

出版信息

J Mol Graph Model. 2011 Jun;29(7):906-14. doi: 10.1016/j.jmgm.2011.02.004. Epub 2011 Mar 8.

Abstract

Modeling, especially the force field, is crucial for the accuracy of molecular dynamics (MD) simulations. In order for more accurate description of adsorption and desorption behaviors of lysozyme in hydrophobic charge induction chromatography (HCIC), the Martini coarse-grained (CG) force field has been modified based on the statistical analysis and comparison of an all-atom (AA) force field, GROMOS96 43A1, and the Martini force field. The parameters describing the protein-adsorbent interactions have been adjusted to avoid too strong and unrealistic adsorption of lysozyme on the agarose matrix and HCIC ligands. It is found that the adsorption and desorption behaviors monitored using the modified Martini force field and MD simulation are consistent with previous simulation results with 46-bead β-barrel model protein. Repeated adjustment of both protein position and orientation is necessary to generate enough contacts for a stable adsorption. After reducing the pH in the mobile phase, the lysozyme-ligand electrostatic repulsion leads to protein desorption. In the adsorption process, little conformational transition of lysozyme is observed due to its stable structure, which is in line with previous experimental observations. So, it is concluded that after appropriate modification, the Martini force field can be used to examine the HCIC process of lysozyme. The modification strategy has thus extended the applicability of the Martini force field to protein chromatography, and it is expected to facilitate studies of exploring the molecular details in adsorption chromatography of proteins.

摘要

建模,特别是力场,对于分子动力学(MD)模拟的准确性至关重要。为了更准确地描述溶菌酶在疏水电荷诱导层析(HCIC)中的吸附和解吸行为,基于全原子(AA)力场 GROMOS96 43A1 和 Martini 力场的统计分析和比较,对 Martini 粗粒(CG)力场进行了修改。已调整描述蛋白质-吸附剂相互作用的参数,以避免溶菌酶在琼脂糖基质和 HCIC 配体上的吸附过于强烈和不现实。结果发现,使用改进的 Martini 力场和 MD 模拟监测的吸附和解吸行为与之前使用 46 珠β-桶模型蛋白的模拟结果一致。为了产生足够的接触以实现稳定吸附,需要反复调整蛋白质的位置和取向。在降低流动相的 pH 值后,溶菌酶-配体的静电排斥导致蛋白质解吸。在吸附过程中,由于其稳定的结构,观察到溶菌酶的构象转变很小,这与之前的实验观察结果一致。因此,可以得出结论,经过适当的修改,Martini 力场可用于研究溶菌酶的 HCIC 过程。这种修改策略扩展了 Martini 力场在蛋白质色谱中的适用性,有望促进探索蛋白质吸附色谱中分子细节的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验