Caicedo-Reina Mauricio, Rocha-Ortiz Juan S, Wu Jianchang, Bornschlegl Andreas J, Leon Salvador, Barabash Anastasia, Dario Perea Jose, Wang Yunuo, Arango-Marín Vanessa, Ortiz Alejandro, Lüer Larry, Hauch Jens A, Insuasty Braulio, Brabec Christoph J
Department of Chemistry, Grupo de Investigación de Compuestos Heterocíclicos, Universidad del Valle, Calle 13 #100-00, 760032, Cali, Colombia.
Department of High Throughput Methods in Photovoltaics, Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany.
Chemistry. 2025 Mar 3;31(13):e202404251. doi: 10.1002/chem.202404251. Epub 2025 Jan 28.
Perovskite solar cells (PSCs) have recently achieved over 26 % power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like Spiro-OMeTAD and PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost. This study explores the potential of iminodibenzyl, a moiety known for its strong electron-donating capabilities in pharmaceutical applications, as a novel HTM. A series of fluorene-based derivatives incorporating iminodibenzyl (TMF-2 and TDF-2) and diphenylamine (TMF-1 and TDF-1) units were synthesized and characterized. The new HTMs demonstrated commendable optical, electrochemical, and thermal properties, as well as enhanced photostability. Among them, TDF-2 achieved a power conversion efficiency (PCE) of 19.38 %, the highest of the new materials. Although these efficiencies are slightly lower than the benchmark PTAA (20.20 %), the study underscores the potential of iminodibenzyl to enhance photostability and increase HOMO levels, making it a promising candidate for future HTM development in PSCs.
钙钛矿太阳能电池(PSCs)最近实现了超过26%的功率转换效率,对硅基替代方案的主导地位构成了挑战。这一进展在很大程度上得益于空穴传输材料(HTMs)的创新,这些材料对PSCs的效率和稳定性有显著影响。然而,传统的有机HTMs,如Spiro-OMeTAD和PTAA,尽管效率很高,但存在热降解、水分侵入和成本高的问题。本研究探索了亚氨基二苄基作为一种新型HTM的潜力,亚氨基二苄基在药物应用中以其强大的给电子能力而闻名。合成并表征了一系列含有亚氨基二苄基(TMF-2和TDF-2)和二苯胺(TMF-1和TDF-1)单元的芴基衍生物。新型HTMs表现出了良好的光学、电化学和热性能,以及增强的光稳定性。其中,TDF-2的功率转换效率(PCE)达到了19.38%,是新材料中最高的。尽管这些效率略低于基准PTAA(20.20%),但该研究强调了亚氨基二苄基在增强光稳定性和提高最高占据分子轨道(HOMO)能级方面的潜力,使其成为未来PSCs中HTM开发的一个有前景的候选材料。