Li Ye-Cheng, Zhang Xiao-Long, Tai Xiao-Lin, Yang Xue-Peng, Yu Peng-Cheng, Dong Shi-Chen, Chi Li-Ping, Wu Zhi-Zheng, Zhang Yu-Cai, Sun Shu-Ping, Lu Pu-Gan, Zhu Lei, Gao Fei-Yue, Lin Yue, Gao Min-Rui
Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, China.
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
Angew Chem Int Ed Engl. 2025 Apr 1;64(14):e202422054. doi: 10.1002/anie.202422054. Epub 2025 Jan 21.
Electrolysis of carbon dioxide (CO) in acid offers a promising route to overcome CO loss in alkaline and neutral electrolytes, but requires concentrated alkali cations (typical ≥3 M) to mitigate the trade-off between low pH and high hydrogen evolution reaction (HER) rate, causing salt precipitation. Here we report a strategy to resolve this problem by introducing tensile strain in a copper (Cu) catalyst, which can selectively reduce CO to valuable multicarbon products, particularly ethylene, in a pH 1 electrolyte with 1 M potassium ions. We find that the tension-strained Cu creates an electron-rich surface that concentrates diluted potassium ions, contributing to CO activation and HER suppression. With this catalyst, we show constant ethylene Faradaic efficiency (FE) of 44.3 % over 100 hours at 400 mA cm and a cell voltage of 3.1 volts in a proton-exchange membrane electrolyser. Moreover, selective electrosynthesis of ethylene oxide using the as-produced ethylene was demonstrated in an integrated system.
在酸性条件下对二氧化碳(CO₂)进行电解,为克服碱性和中性电解质中CO₂的损失提供了一条有前景的途径,但需要浓碱金属阳离子(通常≥3 M)来缓解低pH值与高析氢反应(HER)速率之间的权衡,这会导致盐沉淀。在此,我们报告了一种通过在铜(Cu)催化剂中引入拉伸应变来解决这一问题的策略,该策略能够在含有1 M钾离子的pH 1电解质中,将CO₂选择性地还原为有价值的多碳产物,尤其是乙烯。我们发现,受拉伸应变的Cu会形成一个富电子表面,该表面会富集稀释的钾离子,有助于CO₂的活化和对HER的抑制。使用这种催化剂,我们在质子交换膜电解槽中,于400 mA cm⁻²的电流密度和3.1伏的电池电压下,实现了100小时内乙烯法拉第效率(FE)恒定为44.3%。此外,在一个集成系统中展示了利用所生成的乙烯选择性电合成环氧乙烷的过程。