Suppr超能文献

F-FDG PET/CT双病灶影像组学与传统模型在经典型霍奇金淋巴瘤中的预测能力:一项回顾性验证的比较研究

The predictive power of F-FDG PET/CT two-lesions radiomics and conventional models in classical Hodgkin's Lymphoma: a comparative retrospectively-validated study.

作者信息

Triumbari Elizabeth Katherine Anna, Morland David, Gatta Roberto, Boldrini Luca, De Summa Marco, Chiesa Silvia, Cuccaro Annarosa, Maiolo Elena, Hohaus Stefan, Annunziata Salvatore

机构信息

Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.

Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy.

出版信息

Ann Hematol. 2025 Jan;104(1):641-651. doi: 10.1007/s00277-025-06190-8. Epub 2025 Jan 14.

Abstract

In a previous preliminary study, radiomic features from the largest and the hottest lesion in baseline F-FDG PET/CT (bPET/CT) of classical Hodgkin's Lymphoma (cHL) predicted early response-to-treatment and prognosis. Aim of this large retrospectively-validated study is to evaluate the predictive role of two-lesions radiomics in comparison with other clinical and conventional PET/CT models. cHL patients with bPET/CT between 2010 and 2020 were retrospectively included and randomized into training-validation sets. Target lesions were: Lesion_A, with largest axial diameter (D); Lesion_B, with highest SUV. Total-metabolic-tumor-volume (TMTV) was calculated and 212 radiomic features were extracted. PET/CT features were harmonized using ComBat across two scanners. Outcomes were progression-free-survival (PFS) and Deauville Score at interim PET/CT (DS). For each outcome, three predictive models and their combinations were trained and validated: - radiomic model "R"; - conventional PET/CT model "P"; - clinical model "C". 197 patients were included (training = 118; validation = 79): 38/197 (19%) patients had adverse events and 42/193 (22%) had DS ≥ 4. In the training phase, only one radiomic feature was selected for PFS prediction in model "R" (Lesion_B F_cm.corr, C-index 66.9%). Best "C" model combined stage and IPS (C-index 74.8%), while optimal "P" model combined TMTV and D (C-index 63.3%). After internal validation, "C", "C + R", "R + P" and "C + R + P" significantly predicted PFS. The best validated model was "C + R" (C-index 66.3%). No model was validated for DS prediction. In this large retrospectively-validated study, a combination of baseline F-FDG PET/CT two-lesions radiomics and other conventional models showed an added prognostic power in patients with cHL. As single models, conventional clinical parameters maintain their prognostic power, while radiomics or conventional PET/CT alone seem to be sub-optimal to predict survival.

摘要

在之前的一项初步研究中,经典型霍奇金淋巴瘤(cHL)基线F-FDG PET/CT(bPET/CT)中最大且最热点状病变的放射组学特征可预测早期治疗反应和预后。这项大型回顾性验证研究的目的是评估双病变放射组学与其他临床及传统PET/CT模型相比的预测作用。回顾性纳入了2010年至2020年间进行bPET/CT检查的cHL患者,并随机分为训练-验证集。目标病变为:病变A,具有最大轴向直径(D);病变B,具有最高SUV。计算总代谢肿瘤体积(TMTV)并提取212个放射组学特征。使用ComBat对两台扫描仪的PET/CT特征进行标准化。观察指标为无进展生存期(PFS)和中期PET/CT时的迪沃利评分(DS)。对于每个观察指标,训练并验证了三种预测模型及其组合:- 放射组学模型“R”;- 传统PET/CT模型“P”;- 临床模型“C”。纳入了197例患者(训练组 = 118例;验证组 = 79例):197例患者中有38例(19%)发生不良事件,193例患者中有42例(22%)DS≥4。在训练阶段,模型“R”中仅选择了一个放射组学特征用于PFS预测(病变B F_cm.corr,C指数66.9%)。最佳“C”模型结合了分期和国际预后评分(IPS)(C指数74.8%),而最佳“P ”模型结合了TMTV和D(C指数63.3%)。经过内部验证,“C”、“C + R”、“R + P”和“C + R + P”显著预测了PFS。验证效果最佳的模型是“C + R”(C指数66.3%)。没有模型被验证可用于DS预测。在这项大型回顾性验证研究中,基线F-FDG PET/CT双病变放射组学与其他传统模型的组合在cHL患者中显示出额外的预后预测能力。作为单一模型,传统临床参数保持其预后预测能力,而单独的放射组学或传统PET/CT在预测生存方面似乎并不理想。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/908d/11868178/d6ac172155ac/277_2025_6190_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验