Suppr超能文献

基于交叉组合方法的最优 PET 放射组学特征构建,用于预测弥漫性大 B 细胞淋巴瘤患者的生存情况。

Optimal PET-based radiomic signature construction based on the cross-combination method for predicting the survival of patients with diffuse large B-cell lymphoma.

机构信息

Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.

The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China.

出版信息

Eur J Nucl Med Mol Imaging. 2022 Jul;49(8):2902-2916. doi: 10.1007/s00259-022-05717-9. Epub 2022 Feb 11.

Abstract

PURPOSE

To develop and externally validate models incorporating a PET radiomics signature (R-signature) obtained by the cross-combination method for predicting the survival of patients with diffuse large B-cell lymphoma (DLBCL).

METHODS

A total of 383 patients with DLBCL from two medical centres between 2011 and 2019 were included. The cross-combination method was used on three types of PET radiomics features from the training cohort to generate 49 feature selection-classification candidates based on 7 different machine learning models. The R-signature was then built by selecting the optimal candidates based on their progression-free survival (PFS) and overall survival (OS). Cox regression analysis was used to develop the survival prediction models. The calibration, discrimination, and clinical utility of the models were assessed and externally validated.

RESULTS

The R-signatures determined by 12 and 31 radiomics features were significantly associated with PFS and OS, respectively (P<0.05). The combined models that incorporated R-signatures, metabolic metrics, and clinical risk factors exhibited significant prognostic superiority over the clinical models, PET-based models, and the National Comprehensive Cancer Network International Prognostic Index in terms of both PFS (C-index: 0.801 vs. 0.732 vs. 0.785 vs. 0.720, respectively) and OS (C-index: 0.807 vs. 0.740 vs. 0.773 vs. 0.726, respectively). For external validation, the C-indices were 0.758 vs. 0.621 vs. 0.732 vs. 0.673 and 0.794 vs. 0.696 vs. 0.781 vs. 0.708 in the PFS and OS analyses, respectively. The calibration curves showed good consistency, and the decision curve analysis supported the clinical utility of the combined model.

CONCLUSION

The R-signature could be used as a survival predictor for DLBCL, and its combination with clinical factors may allow for accurate risk stratification.

摘要

目的

开发并验证一种结合正电子发射断层扫描(PET)放射组学特征(R 特征)的模型,该模型通过交叉组合方法获得,用于预测弥漫性大 B 细胞淋巴瘤(DLBCL)患者的生存情况。

方法

共纳入 2011 年至 2019 年来自两个医疗中心的 383 例 DLBCL 患者。在训练队列中使用三种类型的 PET 放射组学特征,基于 7 种不同的机器学习模型,生成 49 种特征选择-分类候选物。然后,根据无进展生存期(PFS)和总生存期(OS)选择最佳候选物构建 R 特征。使用 Cox 回归分析建立生存预测模型。评估并外部验证模型的校准、区分和临床实用性。

结果

确定的由 12 个和 31 个放射组学特征组成的 R 特征与 PFS 和 OS 显著相关(P<0.05)。与临床模型、基于 PET 的模型和国家综合癌症网络国际预后指数相比,纳入 R 特征、代谢指标和临床危险因素的联合模型在 PFS(C 指数:0.801 比 0.732 比 0.785 比 0.720)和 OS(C 指数:0.807 比 0.740 比 0.773 比 0.726)方面具有显著的预后优势。对于外部验证,PFS 和 OS 分析中的 C 指数分别为 0.758 比 0.621 比 0.732 比 0.673 和 0.794 比 0.696 比 0.781 比 0.708。校准曲线显示出良好的一致性,决策曲线分析支持联合模型的临床实用性。

结论

R 特征可作为 DLBCL 的生存预测指标,与临床因素相结合可能实现准确的风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验