Kok Thomas T, Morales John, Deschrijver Dirk, Blanco-Almazán Dolores, Groenendaal Willemijn, Ruttens David, Smeets Christophe, Mihajlović Vojkan, Ongenae Femke, Van Hoecke Sofie
IDLab, Ghent University-Imec, Technologiepark-Zwijnaarde 126, Zwijnaarde, Belgium.
Imec Netherlands, HTC 31, Eindhoven, Netherlands.
Med Biol Eng Comput. 2025 May;63(5):1481-1495. doi: 10.1007/s11517-025-03285-2. Epub 2025 Jan 14.
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide and greatly reduces the quality of life. Utilizing remote monitoring has been shown to improve quality of life and reduce exacerbations, but remains an ongoing area of research. We introduce a novel method for estimating changes in ease of breathing for COPD patients, using obstructed breathing data collected via wearables. Physiological signals were recorded, including respiratory airflow, acceleration, audio, and bio-impedance. By comparing patient-specific measurements, this approach enables non-intrusive remote monitoring. We analyze the influence of signal selection, window parameters, feature engineering, and classification models on predictive performance, finding that acceleration signals are most effective, complemented by audio signals. The best model achieves an F1-score of 0.83. To facilitate clinical adoption, we incorporate interpretability by designing novel saliency map methods, highlighting important aspects of the signals. We adapt local explainability techniques to time series and introduce a novel imputation method for periodic signals, improving faithfulness to the data and interpretability.
慢性阻塞性肺疾病(COPD)是全球主要的死亡原因之一,严重降低了生活质量。利用远程监测已被证明可以提高生活质量并减少病情加重,但它仍是一个正在进行研究的领域。我们介绍了一种新方法,通过可穿戴设备收集的呼吸受阻数据来估计COPD患者呼吸舒适度的变化。记录了生理信号,包括呼吸气流、加速度、音频和生物阻抗。通过比较特定患者的测量数据,这种方法能够实现非侵入式远程监测。我们分析了信号选择、窗口参数、特征工程和分类模型对预测性能的影响,发现加速度信号最为有效,音频信号可作为补充。最佳模型的F1分数达到0.83。为便于临床应用,我们通过设计新颖的显著性图方法来增强可解释性,突出信号的重要方面。我们将局部可解释性技术应用于时间序列,并引入了一种针对周期性信号的新颖插补方法,提高了对数据的忠实度和可解释性。