Corrales Rosa Milagros, Vincent Jeremy, Crobu Lucien, Neish Rachel, Nepal Binita, Espeut Julien, Pasquier Grégoire, Gillard Ghislain, Cazevieille Chantal, Mottram Jeremy C, Wetzel Dawn M, Sterkers Yvon, Rogowski Krzysztof, Lévêque Maude F
Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier 34095, France.
York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, United Kingdom.
Proc Natl Acad Sci U S A. 2025 Jan 21;122(3):e2415296122. doi: 10.1073/pnas.2415296122. Epub 2025 Jan 14.
Tubulin detyrosination has been implicated in various human disorders and is important for regulating microtubule dynamics. While in most organisms this modification is restricted to α-tubulin, in trypanosomatid parasites, it occurs on both α- and β-tubulin. Here, we show that in , a single vasohibin (LmVASH) enzyme is responsible for differential kinetics of α- and β-tubulin detyrosination. LmVASH knockout parasites, which are completely devoid of detyrosination, show decreased levels of glutamylation and exhibit a strongly diminished pathogenicity in mice, correlating with decreased proliferation in macrophages. Reduced virulence is associated with altered morphogenesis and flagellum remodeling in detyrosination-deficient amastigotes. Flagellum shortening in the absence of detyrosination is caused by hyperactivity of a microtubule-depolymerizing Kinesin-13 homolog, demonstrating its function as a key reader of the trypanosomatid-tubulin code. Taken together, our work establishes the importance of tubulin detyrosination in remodeling the microtubule-based cytoskeleton required for efficient proliferation in the mammalian host. This highlights tubulin detyrosination as a potential target for therapeutic action against leishmaniasis.
微管蛋白去酪氨酸化与多种人类疾病有关,对调节微管动力学很重要。在大多数生物中,这种修饰仅限于α-微管蛋白,而在锥虫寄生虫中,α-和β-微管蛋白上都会发生这种修饰。在这里,我们表明,在利什曼原虫中,一种单一的血管抑制素(LmVASH)酶负责α-和β-微管蛋白去酪氨酸化的不同动力学。LmVASH基因敲除的寄生虫完全没有去酪氨酸化,其谷氨酰化水平降低,在小鼠中的致病性显著降低,这与在巨噬细胞中增殖减少相关。毒力降低与去酪氨酸化缺陷的无鞭毛体中形态发生改变和鞭毛重塑有关。在没有去酪氨酸化的情况下鞭毛缩短是由一种微管解聚驱动蛋白-13同源物的过度活跃引起的,这证明了它作为锥虫微管蛋白编码关键解读器的功能。综上所述,我们的工作确立了微管蛋白去酪氨酸化在重塑哺乳动物宿主体内有效增殖所需的基于微管的细胞骨架中的重要性。这突出了微管蛋白去酪氨酸化作为抗利什曼病治疗作用潜在靶点的地位。