Jing Zhongxin, Kong Lingtong, Mamoor Muhammad, Wang Lu, Zhang Bo, Wang Bin, Zhai Yanjun, Wang Fengbo, Qu Guangmeng, Kong Yueyue, Wang Dedong, Xu Liqiang
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
J Am Chem Soc. 2025 Jan 29;147(4):3702-3713. doi: 10.1021/jacs.4c16031. Epub 2025 Jan 14.
Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.9 and 56.1 mAh/g under 0.5 and 100 C, respectively), remarkable cycling stability over 30,000 cycles, high energy density (259.7 Wh/kg for the full cell), and a wide operation-temperature range (-60-80 °C). / techniques and density functional theory calculations reveal the quasi-zero-strain and multielectron redox mechanisms of the FeVO-PBA cathode during cycling, supporting its higher specific capacity and stable cycling. It is considered that the d-d electron compensation effect between Fe and V enhanced the reversibility and kinetics of redox reactions and simultaneously improved the electronic conductivity and structural stability of the FeVO-PBA cathode. This work may pave a new way for the rational design of high-performance cathode materials with bimetallic reaction centers for SIBs.
构建具有优化协同双金属反应中心的普鲁士蓝类似物(PBA)阴极是设计高能量钠离子电池(SIB)的典型策略;然而,这些阴极通常存在快速容量衰减和反应动力学迟缓的问题。为缓解上述问题,在此,通过“酸辅助合成”策略方便地制备了一系列基于早期过渡金属(ETM)-晚期过渡金属(LTM)的PBA(Fe-VO、Fe-TiO、Fe-ZrO、Co-VO和Fe-Co-VO)阴极材料。作为一个范例,FeVO-PBA(FV)具有出色的倍率性能(在0.5和100 C下分别为148.9和56.1 mAh/g)、超过30000次循环的显著循环稳定性、高能量密度(全电池为259.7 Wh/kg)以及宽工作温度范围(-60-80°C)。/技术和密度泛函理论计算揭示了FeVO-PBA阴极在循环过程中的准零应变和多电子氧化还原机制,支持其更高的比容量和稳定循环。据认为,Fe和V之间的d-d电子补偿效应增强了氧化还原反应的可逆性和动力学,同时提高了FeVO-PBA阴极的电子导电性和结构稳定性。这项工作可能为合理设计具有双金属反应中心的高性能SIB阴极材料开辟一条新途径。