Suppr超能文献

用于在磁共振成像(MR)重建过程中共享低秩、图像和k空间信息以实现单次屏气心脏电影成像的注意力合并网络。

Attention incorporated network for sharing low-rank, image and k-space information during MR image reconstruction to achieve single breath-hold cardiac Cine imaging.

作者信息

Xu Siying, Hammernik Kerstin, Lingg Andreas, Kübler Jens, Krumm Patrick, Rueckert Daniel, Gatidis Sergios, Küstner Thomas

机构信息

Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University of Tuebingen, Tuebingen, Germany.

School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.

出版信息

Comput Med Imaging Graph. 2025 Mar;120:102475. doi: 10.1016/j.compmedimag.2024.102475. Epub 2024 Dec 28.

Abstract

Cardiac Cine Magnetic Resonance Imaging (MRI) provides an accurate assessment of heart morphology and function in clinical practice. However, MRI requires long acquisition times, with recent deep learning-based methods showing great promise to accelerate imaging and enhance reconstruction quality. Existing networks exhibit some common limitations that constrain further acceleration possibilities, including single-domain learning, reliance on a single regularization term, and equal feature contribution. To address these limitations, we propose to embed information from multiple domains, including low-rank, image, and k-space, in a novel deep learning network for MRI reconstruction, which we denote as A-LIKNet. A-LIKNet adopts a parallel-branch structure, enabling independent learning in the k-space and image domain. Coupled information sharing layers realize the information exchange between domains. Furthermore, we introduce attention mechanisms into the network to assign greater weights to more critical coils or important temporal frames. Training and testing were conducted on an in-house dataset, including 91 cardiovascular patients and 38 healthy subjects scanned with 2D cardiac Cine using retrospective undersampling. Additionally, we evaluated A-LIKNet on the real-time prospectively undersampled data from the OCMR dataset. The results demonstrate that our proposed A-LIKNet outperforms existing methods and provides high-quality reconstructions. The network can effectively reconstruct highly retrospectively undersampled dynamic MR images up to 24× accelerations, indicating its potential for single breath-hold imaging.

摘要

心脏电影磁共振成像(MRI)在临床实践中能对心脏形态和功能进行准确评估。然而,MRI采集时间长,基于深度学习的方法有望加速成像并提高重建质量。现有网络存在一些共同局限性,限制了进一步加速的可能性,包括单域学习、依赖单一正则化项以及特征贡献均等。为解决这些局限性,我们提出在一种用于MRI重建的新型深度学习网络中嵌入来自多个域的信息,包括低秩、图像和k空间,我们将其称为A-LIKNet。A-LIKNet采用并行分支结构,能够在k空间和图像域中独立学习。耦合信息共享层实现域间信息交换。此外,我们在网络中引入注意力机制,为更关键的线圈或重要的时间帧赋予更大权重。在一个内部数据集上进行了训练和测试,该数据集包括91名心血管疾病患者和38名健康受试者,使用回顾性欠采样进行二维心脏电影扫描。此外,我们在来自OCMR数据集的实时前瞻性欠采样数据上评估了A-LIKNet。结果表明,我们提出的A-LIKNet优于现有方法,并能提供高质量重建。该网络能够有效地重建高达24倍加速的高度回顾性欠采样动态MR图像,表明其在单次屏气成像方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验