Suppr超能文献

电影式心血管磁共振快速功能成像的变分网络重建

CineVN: Variational network reconstruction for rapid functional cardiac cine MRI.

机构信息

Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Magnetic Resonance, Siemens Healthineers AG, Erlangen, Germany.

出版信息

Magn Reson Med. 2025 Jan;93(1):138-150. doi: 10.1002/mrm.30260. Epub 2024 Aug 26.

Abstract

PURPOSE

To develop a reconstruction method for highly accelerated cardiac cine MRI with high spatiotemporal resolution and low temporal blurring, and to demonstrate accurate estimation of ventricular volumes and myocardial strain in healthy subjects and in patients.

METHODS

The proposed method, called CineVN, employs a spatiotemporal Variational Network combined with conjugate gradient descent for optimized data consistency and improved image quality. The method is first evaluated on retrospectively undersampled cine MRI data in terms of image quality. Then, prospectively accelerated data are acquired in 18 healthy subjects both segmented over two heartbeats per slice as well as in real time with 1.6 mm isotropic resolution. Ventricular volumes and strain parameters are computed and compared to a compressed sensing reconstruction and to a conventional reference cine MRI acquisition. Lastly, the method is demonstrated in 46 patients and ventricular volumes and strain parameters are evaluated.

RESULTS

CineVN outperformed compressed sensing in image quality metrics on retrospectively undersampled data. Functional parameters and myocardial strain were the most accurate for CineVN compared to two state-of-the-art compressed sensing methods.

CONCLUSION

Deep learning-based reconstruction using our proposed method enables accurate evaluation of cardiac function in real-time cine MRI with high spatiotemporal resolution. This has the potential to improve cardiac imaging particularly for patients with arrhythmia or impaired breath-hold capability.

摘要

目的

开发一种具有高时空分辨率和低时间模糊度的高度加速心脏电影 MRI 重建方法,并在健康受试者和患者中证明心室容积和心肌应变的准确估计。

方法

所提出的方法称为 CineVN,它使用时空变分网络结合共轭梯度下降来实现优化的数据一致性和提高图像质量。该方法首先在回顾性欠采样电影 MRI 数据方面进行了图像质量评估。然后,在 18 名健康受试者中前瞻性地加速采集数据,每个切片采集两个心跳的分段数据以及具有 1.6mm 各向同性分辨率的实时数据。计算心室容积和应变参数,并与压缩感知重建和常规参考电影 MRI 采集进行比较。最后,该方法在 46 名患者中进行了演示,并评估了心室容积和应变参数。

结果

在回顾性欠采样数据的图像质量指标方面,CineVN 优于压缩感知。与两种最先进的压缩感知方法相比,CineVN 的功能参数和心肌应变最准确。

结论

使用我们提出的方法进行基于深度学习的重建,可以在具有高时空分辨率的实时电影 MRI 中准确评估心脏功能。这有可能改善心律失常或呼吸暂停能力受损的患者的心脏成像。

相似文献

本文引用的文献

4
Cardiac MRI: State of the Art.心脏 MRI:最新技术。
Radiology. 2023 May;307(3):e223008. doi: 10.1148/radiol.223008. Epub 2023 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验