Suppr超能文献

JTF-SqueezeNet:一种基于联合时频数据表示的SqueezeNet网络,用于个体笼养鸭子的产蛋检测。

JTF-SqueezeNet: A SqueezeNet network based on joint time-frequency data representation for egg-laying detection in individually caged ducks.

作者信息

Lv Siting, Mao Yuanyang, Liu Youfu, Huang Yigui, Guo Dakang, Cheng Lei, Tang Zhuoheng, Peng Shaohai, Xiao Deqin

机构信息

College of Mathematics Informatics, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Smart Agricultural Technology in Tropical South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangdong Engineering Research Center of Agricultural Big Data, Guangzhou 510642, China.

College of Mathematics Informatics, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Smart Agricultural Technology in Tropical South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangdong Engineering Research Center of Agricultural Big Data, Guangzhou 510642, China.

出版信息

Poult Sci. 2025 Feb;104(2):104782. doi: 10.1016/j.psj.2025.104782. Epub 2025 Jan 7.

Abstract

Accurate individual egg-laying detection is crucial for eliminating low-yielding breeder ducks and improving production efficiency. However, existing methods are often expensive and require strict environmental conditions. This study proposes a data processing method based on wearable sensors and joint time-frequency representation (TFR), aimed at accurately identifying egg-laying in ducks. First, the sensors continuously monitor the ducks' activity and collect corresponding X-axis acceleration data. Next, a sliding window combined with Short-Time Fourier Transform (STFT) is applied to convert the continuous data into spectrograms within consecutive windows. SqueezeNet is then used to detect spectrograms containing key features of the egg-laying process, marking these as egg-laying state windows. Finally, Kalman filtering was used to continuously predict the detected egg-laying status, allowing for the precise determination of the egg-laying period. The best detection performance was achieved by applying the 10-fold cross-validation to a dataset of 59,135 spectrograms, using a window size of 50 min and a step size of 3 min. This configuration yielded an accuracy of 95.73 % for detecting egg-laying status, with an inference time of only 2.1511 milliseconds per window. The accuracy for identifying the egg-laying period reached 92.19 %, with a precision of 93.57 % and a recall rate of 91.95 %. Additionally, we explored the scalability of the joint time-frequency representation to reduce the computational complexity of the model.

摘要

准确的个体产蛋检测对于淘汰低产种鸭和提高生产效率至关重要。然而,现有方法往往成本高昂且需要严格的环境条件。本研究提出一种基于可穿戴传感器和联合时频表示(TFR)的数据处理方法,旨在准确识别鸭的产蛋情况。首先,传感器持续监测鸭子的活动并收集相应的X轴加速度数据。接下来,应用滑动窗口结合短时傅里叶变换(STFT)将连续数据转换为连续窗口内的频谱图。然后使用SqueezeNet检测包含产蛋过程关键特征的频谱图,将这些标记为产蛋状态窗口。最后,使用卡尔曼滤波对检测到的产蛋状态进行连续预测,从而精确确定产蛋期。通过对59135个频谱图的数据集应用10折交叉验证,使用窗口大小为50分钟和步长为3分钟,实现了最佳检测性能。这种配置在检测产蛋状态时的准确率为95.73%,每个窗口的推理时间仅为2.1511毫秒。识别产蛋期的准确率达到92.19%,精确率为93.57%,召回率为91.95%。此外,我们还探索了联合时频表示的可扩展性以降低模型计算复杂度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9a5/11782797/e1743c106968/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验