Gao Bin, Guo Yongmin, Zheng Pengshen, Yang Kaisi, Chen Changxi
Key Laboratory of Smart Breeding (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin 300384, China.
College of Computer and Information Engineering, Tianjin Agricultural University, Tianjin 300384, China.
Sensors (Basel). 2025 Jun 29;25(13):4051. doi: 10.3390/s25134051.
Efficient individual identification is essential for advancing precision broiler farming. In this study, we propose YOLO-IFSC, a high-precision and lightweight face recognition framework specifically designed for dense broiler farming environments. Building on the YOLOv11n architecture, the proposed model integrates four key modules to overcome the limitations of traditional methods and recent CNN-based approaches. The Inception-F module employs a dynamic multi-branch design to enhance multi-scale feature extraction, while the C2f-Faster module leverages partial convolution to reduce computational redundancy and parameter count. Furthermore, the SPPELANF module reinforces cross-layer spatial feature aggregation to alleviate the adverse effects of occlusion, and the CBAM module introduces a dual-domain attention mechanism to emphasize critical facial regions. Experimental evaluations on a self-constructed dataset demonstrate that YOLO-IFSC achieves a mAP@0.5 of 91.5%, alongside a 40.8% reduction in parameters and a 24.2% reduction in FLOPs compared to the baseline, with a consistent real-time inference speed of 36.6 FPS. The proposed framework offers a cost-effective, non-contact alternative for broiler face recognition, significantly advancing individual tracking and welfare monitoring in precision farming.
高效的个体识别对于推进精准肉鸡养殖至关重要。在本研究中,我们提出了YOLO-IFSC,这是一种专门为密集肉鸡养殖环境设计的高精度轻量级人脸识别框架。该模型基于YOLOv11n架构构建,集成了四个关键模块,以克服传统方法和近期基于卷积神经网络(CNN)方法的局限性。Inception-F模块采用动态多分支设计来增强多尺度特征提取,而C2f-Faster模块利用部分卷积来减少计算冗余和参数数量。此外,SPPELANF模块加强跨层空间特征聚合以减轻遮挡的不利影响,CBAM模块引入双域注意力机制以突出关键面部区域。在自建数据集上的实验评估表明,YOLO-IFSC的mAP@0.5达到91.5%,与基线相比,参数减少40.8%,浮点运算次数(FLOPs)减少24.2%,实时推理速度稳定在36.6帧每秒。所提出的框架为肉鸡面部识别提供了一种经济高效的非接触式替代方案,显著推进了精准养殖中的个体跟踪和福利监测。