Sergis Vasileios, Kelly Daniel, Pramanick Ankita, Britchfield Graham, Mason Karl, Daly Andrew C
CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, Ireland.
Biomedical Engineering, University of Galway, Galway, Ireland.
Biofabrication. 2025 Jan 28;17(2). doi: 10.1088/1758-5090/adaa22.
Despite significant advances in bioprinting technology, current hardware platforms lack the capability for process monitoring and quality control. This limitation hampers the translation of the technology into industrial GMP-compliant manufacturing settings. As a key step towards a solution, we developed a novel bioprinting platform integrating a high-resolution camera formonitoring of extrusion outcomes during embedded bioprinting. Leveraging classical computer vision and image analysis techniques, we then created a custom software module for assessing print quality. This module enables quantitative comparison of printer outputs to input points of the computer-aided design model's 2D projections, measuring area and positional accuracy. To showcase the platform's capabilities, we then investigated compatibility with various bioinks, dyes, and support bath materials for both 2D and 3D print path trajectories. In addition, we performed a detailed study on how the rheological properties of granular support hydrogels impact print quality during embedded bioprinting, illustrating a practical application of the platform. Our results demonstrated that lower viscosity, faster thixotropy recovery, and smaller particle sizes significantly enhance print fidelity. This novel bioprinting platform, equipped with integrated process monitoring, holds great potential for establishing auditable and more reproducible biofabrication processes for industrial applications.
尽管生物打印技术取得了重大进展,但目前的硬件平台仍缺乏过程监测和质量控制能力。这一限制阻碍了该技术向符合工业GMP标准的制造环境的转化。作为迈向解决方案的关键一步,我们开发了一种新型生物打印平台,该平台集成了一个高分辨率摄像头,用于在嵌入式生物打印过程中监测挤出结果。然后,利用经典的计算机视觉和图像分析技术,我们创建了一个用于评估打印质量的定制软件模块。该模块能够将打印机输出与计算机辅助设计模型的二维投影的输入点进行定量比较,测量面积和位置精度。为了展示该平台的能力,我们随后研究了其与各种生物墨水、染料和支撑浴材料在二维和三维打印路径轨迹方面的兼容性。此外,我们还对颗粒状支撑水凝胶的流变特性如何在嵌入式生物打印过程中影响打印质量进行了详细研究,展示了该平台的实际应用。我们的结果表明,较低的粘度、更快的触变性恢复和更小的颗粒尺寸显著提高了打印保真度。这个配备了集成过程监测的新型生物打印平台,在为工业应用建立可审计且更可重复的生物制造过程方面具有巨大潜力。