Suppr超能文献

使用两阶段机器学习模型进行毒理学出发点的定量预测:一种用于化学风险评估的新方法学(NAM)

Quantitative prediction of toxicological points of departure using two-stage machine learning models: A new approach methodology (NAM) for chemical risk assessment.

作者信息

Chandrasekar Vaisali, Mohammad Syed, Aboumarzouk Omar, Singh Ajay Vikram, Dakua Sarada Prasad

机构信息

Department of Surgery, Clinical Advancement Department, Hamad Medical Corporation, Qatar.

Department of Surgery, Clinical Advancement Department, Hamad Medical Corporation, Qatar; College of Health and Medical Sciences, Qatar University, Qatar.

出版信息

J Hazard Mater. 2025 Apr 5;487:137071. doi: 10.1016/j.jhazmat.2024.137071. Epub 2025 Jan 10.

Abstract

Point of departure (POD) is a concept used in risk assessment to calculate the reference dose of exposure that is likely to have no appreciable risk on health. POD can be directly utilized from no observed adverse effect levels (NOAEL) which is the dose or exposure level at which there is little or no risk of adverse effects. However, NOAEL values are unavailable for most of the chemicals due to inconsistent animal toxicity data. Hence, the current study utilizes a two-stage machine learning (ML) model for predicting NOAEL values, based on data curated from diverse toxicity exposures. In the first stage, a random forest regressor is used for supervised outlier detection and removal addressing any variability in data and poor correlations. The refined data is then used for toxicity prediction using several ML models; random forest and XGBoost show relatively higher performance with an R value of 0.4 and 0.43, respectively, for predicting NOAEL in chronic toxicity. Similarly, feature combinations with absorption distribution metabolism and excretion (ADME) indicate better NOAEL prediction for acute toxicity. External validation is performed by predicting NOAEL values for cosmetic pigments and calculating reference doses (RfD). Notably, pigments like orange and red show higher RfD values, indicating broader safety margins. This study provides a practical framework for addressing variability and data limitations in toxicity prediction while offering insights into its applicability in risk evaluation.

摘要

出发剂量(POD)是风险评估中用于计算可能对健康无明显风险的暴露参考剂量的一个概念。出发剂量可直接从未观察到不良反应水平(NOAEL)得出,即几乎没有或不存在不良反应风险的剂量或暴露水平。然而,由于动物毒性数据不一致,大多数化学品的未观察到不良反应水平值无法获取。因此,本研究基于从不同毒性暴露中整理的数据,利用两阶段机器学习(ML)模型来预测未观察到不良反应水平值。在第一阶段,使用随机森林回归器进行监督式异常值检测和去除,以解决数据中的任何变异性和不良相关性问题。然后,将经过优化的数据用于使用几种机器学习模型进行毒性预测;随机森林和极端梯度提升(XGBoost)在预测慢性毒性的未观察到不良反应水平时表现相对较好,R值分别为0.4和0.43。同样,结合吸收、分布、代谢和排泄(ADME)的特征组合在预测急性毒性的未观察到不良反应水平方面表现更佳。通过预测化妆品色素的未观察到不良反应水平值并计算参考剂量(RfD)来进行外部验证。值得注意的是,橙色和红色等色素显示出较高的参考剂量值,表明安全边际更宽。本研究提供了一个实用框架,用于解决毒性预测中的变异性和数据限制问题,同时深入了解其在风险评估中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验