Aly Mohammed
Department of Artificial Intelligence, Faculty of Artificial Intelligence, Egyptian Russian University, 11829, Badr City, Egypt.
Comput Biol Med. 2025 Mar;186:109669. doi: 10.1016/j.compbiomed.2025.109669. Epub 2025 Jan 13.
Weakly-supervised learning (WSL) methods have gained significant attention in medical image segmentation, but they often face challenges in accurately delineating boundaries due to overfitting to weak annotations such as bounding boxes. This issue is particularly pronounced in thyroid ultrasound images, where low contrast and noisy backgrounds hinder precise segmentation. In this paper, we propose a novel weakly-supervised segmentation framework that addresses these challenges. Our framework integrates several key components: the Spatial Arrangement Consistency (SAC) branch, the Hierarchical Prediction Consistency (HPC) branch, the Contextual Feature Integration (CFI) branch, and the Multi-scale Prototype Refinement (MPR) module. These elements work together to enhance segmentation performance and mitigate overfitting to bounding box annotations. Specifically, the SAC branch ensures spatial alignment of the predicted segmentation with the target by evaluating maximum activations along both the horizontal and vertical dimensions of the bounding box. The HPC branch refines prototypes for target and background regions from semantic feature maps, comparing secondary predictions with the initial ones to improve segmentation accuracy. The CFI branch enhances feature representation by incorporating contextual information from neighboring regions, while the MPR module further refines segmentation accuracy by balancing global context and local details through multi-scale feature refinement. We evaluate the performance of our method on two thyroid ultrasound datasets: TG3K and TN3K, using comprehensive metrics including mIOU, DSC, HD95, DI, ACC, PR, and SE. On the TG3K dataset, the Proposed Method achieved mIOU of 71.85 %, DSC of 85.92 %, HD95 of 13.09 mm, and ACC of 0.93, significantly outperforming existing weakly-supervised methods. On the TN3K dataset, our model demonstrated mIOU of 70.45 %, DSC of 84.81 %, HD95 of 14.16 mm, and ACC of 0.91, further validating the robustness of the proposed method across datasets. In terms of Precision (PR) and Sensitivity (SE), the Proposed Method achieved PR = 0.91 and SE = 0.86 on the TG3K dataset, and PR = 0.89 and SE = 0.86 on the TN3K dataset. These results show that our model not only improves segmentation accuracy and boundary delineation (HD95) but also significantly reduces the dependency on pixel-level annotations, providing an effective solution for weakly-supervised thyroid ultrasound segmentation. Our method demonstrates competitive performance with fully-supervised approaches, with reduced annotation time, thereby improving the practicality of deep learning-based segmentation in clinical settings.
弱监督学习(WSL)方法在医学图像分割中受到了广泛关注,但由于过度拟合诸如边界框等弱标注,它们在准确勾勒边界方面常常面临挑战。这个问题在甲状腺超声图像中尤为突出,其中低对比度和嘈杂的背景阻碍了精确分割。在本文中,我们提出了一种新颖的弱监督分割框架来应对这些挑战。我们的框架集成了几个关键组件:空间排列一致性(SAC)分支、分层预测一致性(HPC)分支、上下文特征集成(CFI)分支和多尺度原型细化(MPR)模块。这些元素协同工作以提高分割性能并减轻对边界框标注的过度拟合。具体而言,SAC分支通过评估边界框水平和垂直维度上的最大激活来确保预测分割与目标的空间对齐。HPC分支从语义特征图中为目标和背景区域细化原型,将二次预测与初始预测进行比较以提高分割精度。CFI分支通过合并相邻区域的上下文信息来增强特征表示,而MPR模块通过多尺度特征细化平衡全局上下文和局部细节来进一步提高分割精度。我们使用包括mIOU、DSC、HD95、DI、ACC、PR和SE在内的综合指标,在两个甲状腺超声数据集TG3K和TN3K上评估我们方法的性能。在TG3K数据集上,所提出的方法实现了71.85%的mIOU、85.92%的DSC、13.09毫米的HD95和0.93的ACC,显著优于现有的弱监督方法。在TN3K数据集上,我们的模型展示了70.45%的mIOU、84.81%的DSC、14.16毫米的HD95和0.91的ACC,进一步验证了所提出方法在不同数据集上的稳健性。在精度(PR)和灵敏度(SE)方面,所提出的方法在TG3K数据集上实现了PR = 0.91和SE = 0.86,在TN3K数据集上实现了PR = 0.89和SE = 0.86。这些结果表明,我们的模型不仅提高了分割精度和边界勾勒(HD95),而且显著降低了对像素级标注的依赖,为弱监督甲状腺超声分割提供了有效的解决方案。我们的方法展示了与全监督方法具有竞争力的性能,同时减少了标注时间,从而提高了基于深度学习的分割在临床环境中的实用性。