Aly Mohammed, Behiry Mohamed H
Department of Artificial Intelligence, Faculty of Artificial Intelligence, Egyptian Russian University, Badr, 11829, Egypt.
Department of Computer Science, Faculty of Science, Menofia University, 32611, Shibin El Kom, Egypt.
Sci Rep. 2025 Jul 3;15(1):23694. doi: 10.1038/s41598-025-08436-x.
Three machine learning algorithms-Logistic Boosting, Random Forest, and Support Vector Machines (SVM)-were evaluated for anomaly detection in IoT-driven industrial environments. A real-world dataset of 15,000 instances from factory sensors was analyzed using ROC curves, confusion matrices, and standard metrics. Logistic Boosting outperformed other models with an AUC of 0.992 (96.6% accuracy, 93.5% precision, 94.8% recall, F1-score = 0.941), demonstrating superior handling of imbalanced data (134 FPs, 117 FNs). While Random Forest achieved strong results (AUC = 0.982) and SVM showed high recall, Logistic Boosting's ensemble approach proved most effective for industrial IoT classification. The findings provide actionable insights for real-time detection systems and suggest future directions in hybrid architectures and edge optimization.
对三种机器学习算法——逻辑回归、随机森林和支持向量机(SVM)——进行了评估,以用于物联网驱动的工业环境中的异常检测。使用ROC曲线、混淆矩阵和标准指标,对来自工厂传感器的15000个实例的真实数据集进行了分析。逻辑回归的表现优于其他模型,AUC为0.992(准确率96.6%,精确率93.5%,召回率94.8%,F1分数 = 0.941),显示出对不平衡数据的卓越处理能力(134个误报,117个漏报)。虽然随机森林取得了不错的结果(AUC = 0.982),支持向量机显示出高召回率,但逻辑回归的集成方法被证明对工业物联网分类最为有效。这些发现为实时检测系统提供了可操作的见解,并为混合架构和边缘优化的未来方向提供了建议。