Shahhamzehei Nasim, Abdelfatah Sara, Omer Ejlal A, Riedl Max, Meesters Christian, Schwarzer-Sperber Hannah S, Sutter Kathrin, Bringmann Gerhard, Schwarzer Roland, Efferth Thomas
Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55128, Germany.
HPC-Group, NHR-Southwest, Johannes Gutenberg University, Mainz, Germany; Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany.
Biomed Pharmacother. 2025 Feb;183:117841. doi: 10.1016/j.biopha.2025.117841. Epub 2025 Jan 13.
The COVID-19 pandemic has underscored the urgent need for antiviral agents capable of targeting a broad range of coronaviruses, including emerging variants of SARS-CoV-2. While vaccines have been pivotal, the search for drugs that can prevent viral entry into host cells remains crucial, especially against evolving viral forms and other coronaviruses. In this study, we investigated natural products as a source of antiviral agents, focusing on their potential to block the spike protein's receptor-binding domain (RBD). Utilizing a library of over 210,000 natural product-based compounds from the ZINC database, we employed a Snakemake workflow to screen for inhibitors against RBDs of SARS-CoV-2, its variants, SARS-CoV, and MERS-CoV. Among top N-heterocyclic candidates from virtual screening we found that one compound, i.e., ((2 R,8S)-6-(1-benzylpiperidin-4-yl)-2-naphthalen-1-yl-3,6,17-triazatetracyclo[8.7.0.03,8.011,16]heptadeca-1(10),11,13,15 tetraene-4,7-dione), inhibited SARS-CoV-2 pseudovirus and live virus entry in HEK-ACE2 and Vero E6 host cells at low micromolar IC values. Cell viability assays showed that this compound exerted low cytotoxicity towards HEK-ACE2 while it was not toxic against Vero E6 and MRC5 cell lines. Microscale thermophoresis revealed that this compound strongly bound to the RBDs of SARS-CoV-2, SARS-CoV-2 XBB, SARS-CoV, MERS-CoV, and HCoV-HKU1, with their K values increasing as sequence similarity decreased. Molecular docking studies indicated this active compound binds to the SARS-CoV-2 spike protein RBD and interacts with hotspot amino acid residues required for the RBD-ACE2 interaction and cellular infection. These findings show that this diketopiperazine/piperidine-type alkaloid can be considered for further development as a potential pan-coronavirus entry inhibitor.
新冠疫情凸显了对抗病毒药物的迫切需求,这类药物需能够针对多种冠状病毒,包括严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的新兴变种。虽然疫苗发挥了关键作用,但寻找能够阻止病毒进入宿主细胞的药物仍然至关重要,特别是针对不断演变的病毒形式和其他冠状病毒。在本研究中,我们研究了天然产物作为抗病毒药物的来源,重点关注其阻断刺突蛋白受体结合域(RBD)的潜力。利用来自ZINC数据库的超过210,000种基于天然产物的化合物库,我们采用了Snakemake工作流程来筛选针对SARS-CoV-2及其变种、SARS-CoV和中东呼吸综合征冠状病毒(MERS-CoV)的RBD的抑制剂。在虚拟筛选出的顶级氮杂环候选物中,我们发现一种化合物,即((2 R,8S)-6-(1-苄基哌啶-4-基)-2-萘-1-基-3,6,17-三氮杂四环[8.7.0.03,8.011,16]十七碳-1(10),11,13,15-四烯-4,7-二酮),在低微摩尔IC值下抑制了SARS-CoV-2假病毒和活病毒进入人胚肾细胞-血管紧张素转换酶2(HEK-ACE2)和非洲绿猴肾细胞(Vero E6)宿主细胞。细胞活力测定表明,该化合物对HEK-ACE2的细胞毒性较低,而对Vero E6和人胚肺成纤维细胞(MRC5)细胞系无毒。微量热泳动显示,该化合物与SARS-CoV-2、SARS-CoV-2 XBB、SARS-CoV、MERS-CoV和人冠状病毒HKU1(HCoV-HKU1)的RBD强烈结合,随着序列相似性降低,其解离常数(K值)增加。分子对接研究表明,这种活性化合物与SARS-CoV-2刺突蛋白RBD结合,并与RBD-血管紧张素转换酶2(ACE2)相互作用和细胞感染所需的热点氨基酸残基相互作用。这些发现表明,这种二酮哌嗪/哌啶型生物碱可被考虑进一步开发为一种潜在的泛冠状病毒进入抑制剂。