Suppr超能文献

使用卷积神经网络对蝴蝶翅膀图案种内变异进行背腹比较。

Dorsoventral comparison of intraspecific variation in the butterfly wing pattern using a convolutional neural network.

作者信息

Amino Kai, Hirakawa Tsubasa, Yago Masaya, Matsuo Takashi

机构信息

Graduate School of Informatics, Nagoya University, Aichi, Japan.

Department of Agricultural and Environmental Biology, The University of Tokyo, Tokyo, Japan.

出版信息

Biol Lett. 2025 Jan;21(1):20240446. doi: 10.1098/rsbl.2024.0446. Epub 2025 Jan 15.

Abstract

Butterfly wing patterns exhibit notable differences between the dorsal and ventral surfaces, and morphological analyses of them have provided insights into the ecological and behavioural characteristics of wing patterns. Conventional methods for dorsoventral comparisons are constrained by the need for homologous patches or shared features between two surfaces, limiting their applicability across species. We used a convolutional neural network (CNN)-based analysis, which can compare images of the two surfaces without focusing on homologous patches or features, to detect dorsoventral bias in two types of intraspecific variation: sexual dimorphism and mimetic polymorphism. Using specimen images of 29 species, we first showed that the level of sexual dimorphism calculated by CNN-based analysis corresponded well with traditional assessments of sexual dissimilarity, demonstrating the validity of the method. Dorsal biases were widely detected in sexual dimorphism, suggesting that the conventional hypothesis of dorsally biased sexual selection can be supported in a broader range of species. In contrast, mimetic polymorphism showed no such bias, indicating the importance of both surfaces in mimicry. Our study demonstrates the potential versatility of CNN in comparing wing patterns between the two surfaces, while elucidating the relationship between dorsoventrally different selections and dorsoventral biases in intraspecific variations.

摘要

蝴蝶翅膀图案在背腹表面之间呈现出显著差异,对其进行形态学分析有助于深入了解翅膀图案的生态和行为特征。传统的背腹比较方法受到两个表面之间需要同源斑块或共享特征的限制,从而限制了它们在不同物种中的适用性。我们使用了基于卷积神经网络(CNN)的分析方法,该方法可以在不关注同源斑块或特征的情况下比较两个表面的图像,以检测两种种内变异类型中的背腹偏向:性二态性和拟态多态性。通过使用29个物种的标本图像,我们首先表明基于CNN分析计算出的性二态性水平与传统的性别差异评估结果高度吻合,证明了该方法的有效性。在性二态性中广泛检测到背侧偏向,这表明传统的背侧偏向性选择假说在更广泛的物种中可以得到支持。相比之下,拟态多态性没有显示出这种偏向,这表明两个表面在拟态中都很重要。我们的研究证明了CNN在比较两个表面的翅膀图案方面具有潜在的通用性,同时阐明了背腹不同选择与种内变异中的背腹偏向之间的关系。

相似文献

5
Eliciting adverse effects data from participants in clinical trials.从临床试验参与者中获取不良反应数据。
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
9
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

3
7
Experimental field tests of Batesian mimicry in the swallowtail butterfly .凤蝶贝氏拟态的实验性野外测试
Ecol Evol. 2018 Jul 12;8(15):7657-7666. doi: 10.1002/ece3.4207. eCollection 2018 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验