Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK.
Sci Adv. 2019 Aug 14;5(8):eaaw4967. doi: 10.1126/sciadv.aaw4967. eCollection 2019 Aug.
Traditional anatomical analyses captured only a fraction of real phenomic information. Here, we apply deep learning to quantify total phenotypic similarity across 2468 butterfly photographs, covering 38 subspecies from the polymorphic mimicry complex of and . Euclidean phenotypic distances, calculated using a deep convolutional triplet network, demonstrate significant convergence between interspecies co-mimics. This quantitatively validates a key prediction of Müllerian mimicry theory, evolutionary biology's oldest mathematical model. Phenotypic neighbor-joining trees are significantly correlated with wing pattern gene phylogenies, demonstrating objective, phylogenetically informative phenome capture. Comparative analyses indicate frequency-dependent mutual convergence with coevolutionary exchange of wing pattern features. Therefore, phenotypic analysis supports reciprocal coevolution, predicted by classical mimicry theory but since disputed, and reveals mutual convergence as an intrinsic generator for the unexpected diversity of Müllerian mimicry. This demonstrates that deep learning can generate phenomic spatial embeddings, which enable quantitative tests of evolutionary hypotheses previously only testable subjectively.
传统的解剖学分析只能捕捉到真实表型信息的一小部分。在这里,我们应用深度学习来量化 2468 张蝴蝶照片的总表型相似性,涵盖了来自 和 的多态拟态复合体的 38 个亚种。使用深度卷积三元网络计算的欧几里得表型距离表明,种间共拟态之间具有显著的收敛性。这从定量上验证了缪勒拟态理论的一个关键预测,这是进化生物学最古老的数学模型。表型邻接树与翅膀图案基因系统发育显著相关,表明客观的、具有系统发育信息的表型组捕获。比较分析表明,与翅膀图案特征的共进化交换存在频率依赖性的相互收敛。因此,表型分析支持经典拟态理论预测的互惠共进化,但自那以后一直存在争议,并揭示了相互收敛是缪勒拟态意外多样性的内在产生因素。这表明深度学习可以生成表型空间嵌入,从而能够对以前只能主观测试的进化假设进行定量测试。