Suppr超能文献

XIS温度:用于美国本土气温的每日时空机器学习模型。

XIS-temperature: A daily spatiotemporal machine-learning model for air temperature in the contiguous United States.

作者信息

Just Allan C, Arfer Kodi B, Rush Johnathan, Kloog Itai

机构信息

Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA; Institute at Brown for Environment and Society, Brown University, Providence, RI, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Environ Res. 2025 Apr 1;270:120731. doi: 10.1016/j.envres.2024.120731. Epub 2025 Jan 12.

Abstract

The challenge of reconstructing air temperature for environmental applications is to accurately estimate past exposures even where monitoring is sparse. We present XGBoost-IDW Synthesis for air temperature (XIS-Temperature), a high-resolution machine-learning model for daily minimum, mean, and maximum air temperature, covering the contiguous US from 2003 through 2023. XIS uses remote sensing (land surface temperature and vegetation) along with a parsimonious set of additional predictors to make predictions at arbitrary points, allowing the estimation of address-level exposures. We built XIS with a computationally tractable workflow for extensibility to future years, and we used weighted evaluation to fairly assess performance in sparsely monitored regions. The weighted root mean square error (RMSE) of predictions in site-level cross-validation for 2023 was 1.78 K for the minimum daily temperature, 1.19 K for the mean, and 1.48 K for the maximum. We obtained higher RMSEs in earlier years with fewer ground monitors. Comparing to three leading gridded temperature models in 2021 at thousands of private weather stations not used in model training, XIS had at most 60% of the mean square error for the minimum temperature and 93% for the maximum. In a national application, we report a stronger relationship between summertime minimum temperature and social vulnerability with XIS than with the other models. Thus, XIS-Temperature has potential for reconstructing important environmental exposures, and its predictions have applications in environmental justice and human health.

摘要

在环境应用中重建气温面临的挑战是,即使在监测数据稀少的情况下,也要准确估计过去的暴露情况。我们提出了用于气温的XGBoost反距离加权法合成模型(XIS-气温模型),这是一种用于每日最低、平均和最高气温的高分辨率机器学习模型,覆盖2003年至2023年的美国本土。XIS利用遥感数据(地表温度和植被)以及一组简洁的额外预测因子,在任意点进行预测,从而能够估计地址级别的暴露情况。我们构建XIS时采用了计算上易于处理的工作流程,以便能够扩展到未来年份,并且我们使用加权评估来公平地评估在监测稀少地区的性能。2023年站点级交叉验证中预测的加权均方根误差(RMSE),对于每日最低气温为1.78开尔文,对于平均气温为1.19开尔文,对于最高气温为1.48开尔文。在早期地面监测站较少的年份,我们得到的RMSE更高。与2021年在数千个未用于模型训练的私人气象站的三个领先的网格化温度模型相比,XIS在最低气温方面的均方误差最多为其他模型的60%,在最高气温方面为93%。在一项全国性应用中,我们报告称,与其他模型相比,XIS显示夏季最低气温与社会脆弱性之间的关系更强。因此,XIS-气温模型在重建重要环境暴露方面具有潜力,其预测可应用于环境正义和人类健康领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验