Cheung Yiu Wing Sunny, Nam Sung-Eun, Fairlie Gage M J, Scheu Karlton, Bui Jennifer M, Shariati Hannah R, Gsponer Jörg, Yip Calvin K
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
Autophagy. 2025 Jun;21(6):1173-1191. doi: 10.1080/15548627.2024.2447213. Epub 2025 Jan 14.
The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood. Here, we report the first structure of human EPG5 (HsEPG5) determined by cryo-EM and AlphaFold2 modeling. Our structure revealed that HsEPG5 is constructed from helical bundles analogous to tethering factors in membrane trafficking pathways but contains a unique protruding thumb domain positioned adjacent to the atypical tandem LIR motifs involved in interaction with the GABARAP subfamily of Atg8-family proteins. Our NMR spectroscopic, molecular dynamics simulations and AlphaFold modeling studies showed that the HsEPG5 tandem LIR motifs only bind the canonical LIR docking site (LDS) on GABARAP without engaging in multivalent interaction. Our co-immunoprecipitation analysis further indicated that full-length HsEPG5-GABARAP interaction is mediated primarily by LIR1. Finally, our biochemical affinity isolation, X-ray crystallographic analysis, affinity measurement, and AlphaFold modeling demonstrated that this mode of binding is observed between EPG-5 and its Atg8-family proteins LGG-1 and LGG-2. Collectively our work generated novel insights into the structural properties of EPG5 and how it potentially engages with the autophagosome to confer fusion specificity.: ATG: autophagy related; CSP: chemical shift perturbation; eGFP: enhanced green fluoresent protein; EM: electron microscopy; EPG5: ectopic P-granules 5 autophagy tethering factor; GST: glutathione S-transferase; HP: hydrophobic pocket; HSQC: heteronuclear single-quantum correlation; ITC: isothermal titration calorimetry; LDS: LC3 docking site; LIR: LC3-interacting region; MD: molecular dynamics; NMR: nuclear magnetic resonance; TEV: tobacco etch virus.
多步骤的巨自噬/自噬过程以载有货物的自噬体与溶酶体融合来递送待降解物质而告终。后生动物特有的自噬因子EPG5在这一步骤中起着关键作用,它能增强融合特异性并防止靶向错误。EPG5如何发挥其关键功能以及其缺陷如何导致罕见的多系统疾病维西综合征的多种表型,目前尚不完全清楚。在此,我们报告了通过冷冻电镜和AlphaFold2建模确定的人EPG5(HsEPG5)的首个结构。我们的结构显示,HsEPG5由类似于膜运输途径中拴系因子的螺旋束构成,但包含一个独特的突出拇指结构域,该结构域位于与Atg8家族蛋白的GABARAP亚家族相互作用的非典型串联LIR基序附近。我们的核磁共振光谱、分子动力学模拟和AlphaFold建模研究表明,HsEPG5串联LIR基序仅结合GABARAP上的典型LIR对接位点(LDS),而不参与多价相互作用。我们的免疫共沉淀分析进一步表明,全长HsEPG5与GABARAP的相互作用主要由LIR1介导。最后,我们的生化亲和分离、X射线晶体学分析、亲和力测量和AlphaFold建模表明,在EPG-5与其Atg8家族蛋白LGG-1和LGG-2之间观察到了这种结合模式。我们的工作共同为EPG5的结构特性以及它如何潜在地与自噬体结合以赋予融合特异性提供了新的见解。:ATG:自噬相关;CSP:化学位移扰动;eGFP:增强型绿色荧光蛋白;EM:电子显微镜;EPG5:异位P颗粒5自噬拴系因子;GST:谷胱甘肽S-转移酶;HP:疏水口袋;HSQC:异核单量子相关;ITC:等温滴定量热法;LDS:LC3对接位点;LIR:LC3相互作用区域;MD:分子动力学;NMR:核磁共振;TEV:烟草蚀纹病毒