Suppr超能文献

CT多维度影像组学联合炎症免疫评分用于术前预测食管鳞状细胞癌的病理分级

CT Multidimensional Radiomics Combined with Inflammatory Immune Score For Preoperative Prediction of Pathological Grade in Esophageal Squamous Cell Carcinoma.

作者信息

Zheng Shaokun, Chen Jun, Ren Anwei, Long Weili, Zhang Xiaojiao, He Jiqiang, Yang Ming, Wang Fei

机构信息

Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.).

Department of Pathology, Luzhou People's Hospital, Luzhou 646000, China (W.L.).

出版信息

Acad Radiol. 2025 May;32(5):2667-2678. doi: 10.1016/j.acra.2024.12.030. Epub 2025 Jan 13.

Abstract

RATIONALE AND OBJECTIVES

Inflammation and immune biomarkers can promote angiogenesis and proliferation and metastasis of esophageal squamous cell carcinoma (ESCC). The degree of pathological grade reflects the tumor heterogeneity of ESCC. The purpose is to develop and validate a nomogram based on enhanced CT multidimensional radiomics combined with inflammatory immune score (IIS) for predicting poorly differentiated ESCC.

MATERIALS AND METHODS

A total of 266 ESCC patients from the retrospective study were included and randomly divided into a training set (N=186) and a validation set (N=80), and a complete data set (N=266), and overall survival was determined to follow up after surgery. The tumor imaging was segmented to form intratumoral and peritumoral 3 mm areas of 3D volume of interest (VOI) on CT arterial and venous phases, and 3404 radiomics features were extracted. Finally, the radiomics scores were calculated for arterial phase intratumoral (aInRads), peritumoral 3 mm (aPeriRads3), and venous phase intratumoral (vInRads), peritumoral 3 mm (vPeriRads3). Logistic regression was used to fuse the four cohorts of scores to form a Stacking. Additionally, sixteen inflammatory-immune biomarkers were analyzed, including aspartate aminotransferase to lymphocyte ratio (ALRI), aspartate aminotransferase to alanine aminotransferase ratio (AAR), neutrophil times gamma-glutamyl transpeptidase to lymphocyte ratio (NγLR), and albumin plus 5 times lymphocyte sum (PNI), etc. Finally, IIS was constructed using ALRI, AAR, NγLR and PNI. Model performance was evaluated by area under receiver operating characteristic curve (AUC), calibration curve, and decision curve analyse (DCA).

RESULTS

Stacking and IIS were independent risk factors for predicting poorly differentiated ESCC (P<0.05). Ultimately, three models of the IIS, Stacking, and nomogram were developed. Compared with the Stacking and IIS models, nomogram achieved better diagnostic performance for predicting poorly differentiated ESCC in the training set (0.881vs 0.835 vs 0.750), validation set (0.808 vs 0.796 vs 0.595), and complete data set (0.857 vs 0.823 vs 0.703). The nomogram achieved an AUC of 0.881(95%CI 0.826-0.924) in the training set, and was well verified in the validation set (AUC: 0.808[95%CI 0.705-0.888]) and the complete data set (AUC: 0.857[95%CI 0.809-0.897]). Moreover, calibration curve and DCA showed that nomogram achieved good calibration and owned more clinical net benefits in the three cohorts. KaplanMeier survival curves indicated that nomogram achieved excellent stratification for ESCC grade status (P<0.0001).

CONCLUSION

The nomogram that integrates preoperative inflammatory-immune biomarkers, intratumoral and peritumoral CT radiomics achieves a high and stable diagnostic performance for predicting poorly differentiated ESCC, and may be promising for individualized surgical selection and management.

AVAILABILITY OF DATA AND MATERIALS

The original manuscript contained in the research is included in the article. Further inquiries can be made directly to the corresponding author.

摘要

原理与目的

炎症和免疫生物标志物可促进食管鳞状细胞癌(ESCC)的血管生成、增殖和转移。病理分级程度反映了ESCC的肿瘤异质性。目的是开发并验证一种基于增强CT多维度影像组学结合炎症免疫评分(IIS)的列线图,用于预测低分化ESCC。

材料与方法

纳入回顾性研究中的266例ESCC患者,随机分为训练集(N = 186)和验证集(N = 80),以及一个完整数据集(N = 266),术后随访确定总生存期。对肿瘤影像进行分割,在CT动脉期和静脉期形成肿瘤内及肿瘤周围3mm厚的三维感兴趣区(VOI)区域,提取3404个影像组学特征。最后,计算动脉期肿瘤内(aInRads)、肿瘤周围3mm(aPeriRads3)、静脉期肿瘤内(vInRads)、肿瘤周围3mm(vPeriRads3)的影像组学评分值,并使用逻辑回归将这四个评分队列进行融合以形成Stacking。此外还分析了16种炎症免疫生物标志物,包括天冬氨酸转氨酶与淋巴细胞比值(ALRI)、天冬氨酸转氨酶与丙氨酸转氨酶比值(AAR)、中性粒细胞×γ-谷氨酰转肽酶与淋巴细胞比值(NγLR)、白蛋白 + 5×淋巴细胞总数(PNI)等。最后使用ALRI、AAR、NγLR和PNI构建IIS。通过受试者操作特征曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)评估模型性能。

结果

Stacking和IIS是预测低分化ESCC的独立危险因素(P < 0.05)。最终,构建了IIS模型、Stacking模型和列线图三种模型。与Stacking模型和IIS模型相比,列线图在训练集(0.881 vs 0.835 vs 0.750)、验证集(0.808 vs 0.796 vs 0.595)和完整数据集(0.857 vs 0.823 vs 0.703)中对预测低分化ESCC具有更好的诊断性能。列线图在训练集中的AUC为0.881(95%CI 0.826 - 0.924),在验证集(AUC:0.808[95%CI 0.705 - 0.888])和完整数据集中(AUC:0.857[95%CI 0.809 - 0.897])得到了良好验证。此外,校准曲线和DCA显示列线图在三个队列中具有良好的校准性且具有更多的临床净效益。Kaplan-Meier生存曲线表明列线图对ESCC分级状态具有出色的分层能力(P < 0.0001)。

结论

整合术前炎症免疫生物标志物、肿瘤内及肿瘤周围CT影像组学的列线图在预测低分化ESCC方面具有较高且稳定的诊断性能,在个体化手术选择和管理方面可能具有应用前景。

数据和材料的可用性

研究中的原始稿件包含在本文中。如有进一步查询,可直接联系通讯作者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验