Wang Fang, Wang Zhong-Ye, Luo Yao-Rong, Li Ming-Ding, Yang Yu-Rong, Li Wei, Wang Xiao-Liang, Yang Tiannan, Shen Qun-Dong
Department of Polymer Science and Engineering, Key Laboratory of High-Performance Polymer Materials and Technology of MOE, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, China.
Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China.
Nat Commun. 2025 Jan 15;16(1):675. doi: 10.1038/s41467-024-55726-5.
Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect. In this work, we utilize two-dimensional polyamide with porous structure and hydrogen bonding to achieve multiple polar conformations with short-range order in the electrocaloric composite polymers. The structure minimizes intermolecular interactions while reducing energy barriers for field-driven polar-nonpolar conformational transitions. The electrocaloric polymer exhibits doubled cooling efficiency at electric fields as low as 40 MV m. Additionally, the electrode design achieves a vertical deformation of 2 millimeters, demonstrating the feasibility of self-driven electric refrigeration devices. This porous organic two-dimensional material resolves cooling efficiency limitations from spatial confinement, advancing the integration of two-dimensional materials in flexible electronics.
过热仍然是芯片小型化的主要障碍,会导致设备故障。满足热管理的迫切需求推动了固态电热冷却的发展。然而,通过电热聚合物中的二维材料增强被动散热通常会损害电热效应。在这项工作中,我们利用具有多孔结构和氢键的二维聚酰胺,在电热复合聚合物中实现具有短程有序的多种极性构象。这种结构在最小化分子间相互作用的同时,降低了场驱动极性-非极性构象转变的能垒。该电热聚合物在低至40 MV/m的电场下冷却效率提高了一倍。此外,电极设计实现了2毫米的垂直变形,证明了自驱动电制冷设备的可行性。这种多孔有机二维材料解决了空间限制带来的冷却效率限制问题,推动了二维材料在柔性电子学中的集成。