Suppr超能文献

基于增强灰狼优化算法(EGWO)和随机森林的物联网网络入侵检测机制

Enhanced Grey Wolf Optimization (EGWO) and random forest based mechanism for intrusion detection in IoT networks.

作者信息

Alqahtany Saad Said, Shaikh Asadullah, Alqazzaz Ali

机构信息

Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah, 42351, Saudi Arabia.

Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia.

出版信息

Sci Rep. 2025 Jan 14;15(1):1916. doi: 10.1038/s41598-024-81147-x.

Abstract

Smart devices are enabled via the Internet of Things (IoT) and are connected in an uninterrupted world. These connected devices pose a challenge to cybersecurity systems due attacks in network communications. Such attacks have continued to threaten the operation of systems and end-users. Therefore, Intrusion Detection Systems (IDS) remain one of the most used tools for maintaining such flaws against cyber-attacks. The dynamic and multi-dimensional threat landscape in IoT network increases the challenge of Traditional IDS. The focus of this paper aims to find the key features for developing an IDS that is reliable but also efficient in terms of computation. Therefore, Enhanced Grey Wolf Optimization (EGWO) for Feature Selection (FS) is implemented. The function of EGWO is to remove unnecessary features from datasets used for intrusion detection. To test the new FS technique and decide on an optimal set of features based on the accuracy achieved and the feature taking filters, the most recent FS approach relies on the NF-ToN-IoT dataset. The selected features are evaluated by using the Random Forest (RF) algorithm to combine multiple decision trees and create an accurate result. The experimental outcomes against the most recent procedures demonstrate the capacity of the recommended FS and classification methods to determine attacks in the IDS. Analysis of the results presents that the recommended approach performs more effectively than the other recent techniques with optimized features (i.e., 23 out of 43 features), high accuracy of 99.93% and improved convergence.

摘要

智能设备通过物联网(IoT)实现功能,并在一个不间断的世界中相互连接。这些连接的设备由于网络通信中的攻击,对网络安全系统构成了挑战。此类攻击持续威胁着系统和终端用户的运行。因此,入侵检测系统(IDS)仍然是维护此类网络攻击漏洞最常用的工具之一。物联网网络中动态且多维度的威胁态势增加了传统入侵检测系统的挑战。本文的重点旨在找到开发既可靠又在计算方面高效的入侵检测系统的关键特征。因此,实现了用于特征选择(FS)的增强灰狼优化(EGWO)。EGWO的功能是从用于入侵检测的数据集中去除不必要的特征。为了测试新的特征选择技术,并根据所达到的准确率和特征选取过滤器确定一组最优特征,最新的特征选择方法依赖于NF-ToN-IoT数据集。通过使用随机森林(RF)算法对所选特征进行评估,该算法将多个决策树组合起来并产生准确的结果。与最新程序相比的实验结果表明了推荐的特征选择和分类方法在入侵检测系统中确定攻击的能力。结果分析表明,推荐的方法比其他具有优化特征的最新技术(即43个特征中的23个)表现更有效,准确率高达99.93%,且收敛性有所提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f6e/11732975/c5c940be9c43/41598_2024_81147_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验