Suppr超能文献

工作流程驱动的从单原子催化剂到石墨烯上金合金簇的催化调制

Workflow-driven catalytic modulation from single-atom catalysts to Au-alloy clusters on graphene.

作者信息

Da Silva Gabriel Reynald, Cerqueira Felix João Paulo, Rêgo Celso R C, Dias Alexandre C, de O Bastos Carlos Maciel, Piotrowski Maurício J, Guedes-Sobrinho Diego

机构信息

Department of Chemistry, Federal University of Paraná, Curitiba, 81531-980, Brazil.

Institute of Physics "Armando Dias Tavares", Rio de Janeiro, 20550-900, Brazil.

出版信息

Sci Rep. 2025 Jan 14;15(1):1939. doi: 10.1038/s41598-025-85891-6.

Abstract

Gold-based (Au) nanostructures are efficient catalysts for CO oxidation, hydrogen evolution (HER), and oxygen evolution (OER) reactions, but stabilizing them on graphene (Gr) is challenging due to weak affinity from delocalized [Formula: see text] carbon orbitals. This study investigates forming metal alloys to enhance stability and catalytic performance of Au-based nanocatalysts. Using ab initio density functional theory, we characterize [Formula: see text] sub-nanoclusters (M = Ni, Pd, Pt, Cu, and Ag) with atomicities [Formula: see text], both in gas-phase and supported on Gr. We find that M atoms act as "anchors," enhancing binding to Gr and modulating catalytic efficiency. Notably, [Formula: see text]/Gr shows improved stability, with segregation tendencies mitigated upon adsorption on Gr. The d-band center ([Formula: see text]) model indicates catalytic potential, correlating an optimal [Formula: see text] range of [Formula: see text] eV for HER and OER catalysts. Incorporating Au into [Formula: see text] adjusts [Formula: see text] closer to the Fermi level, especially for Group-10 alloys, offering designs with improved stability and efficiency comparable to pure Au nanocatalysts. Our methodology leveraged SimStack, a workflow framework enabling modeling and analysis, enhancing reproducibility, and accelerating discovery. This work demonstrates SimStack's pivotal role in advancing the understanding of composition-dependent stability and catalytic properties of Au-alloy clusters, providing a systematic approach to optimize metal-support interactions in catalytic applications.

摘要

金基(Au)纳米结构是一氧化碳氧化、析氢反应(HER)和析氧反应(OER)的高效催化剂,但由于离域的π碳轨道亲和力较弱,将它们稳定在石墨烯(Gr)上具有挑战性。本研究调查了通过形成金属合金来提高金基纳米催化剂的稳定性和催化性能。使用从头算密度泛函理论,我们表征了原子数为n = 1 - 13的MₙAu₁₃₋ₙ亚纳米团簇(M = Ni、Pd、Pt、Cu和Ag),包括气相和负载在Gr上的情况。我们发现M原子起到“锚”的作用,增强了与Gr的结合并调节了催化效率。值得注意的是,PdₙAu₁₃₋ₙ/Gr显示出更高的稳定性,吸附在Gr上时偏析倾向减弱。d带中心(εd)模型表明了催化潜力,对于HER和OER催化剂,其最佳εd范围为 - 2.2至 - 2.8 eV。将Au掺入MₙAu₁₃₋ₙ中会使εd更接近费米能级,特别是对于第10族合金,提供了与纯Au纳米催化剂相当的稳定性和效率的设计。我们的方法利用了SimStack,这是一个工作流程框架,能够进行建模和分析,提高可重复性并加速发现。这项工作展示了SimStack在推进对金合金团簇组成依赖性稳定性和催化性能的理解方面的关键作用,为优化催化应用中的金属 - 载体相互作用提供了一种系统方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f46c/11733030/a503ad394565/41598_2025_85891_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验