Luo Jie, Molbay Muge, Chen Ying, Horvath Izabela, Kadletz Karoline, Kick Benjamin, Zhao Shan, Al-Maskari Rami, Singh Inderjeet, Ali Mayar, Bhatia Harsharan Singh, Minde David-Paul, Negwer Moritz, Hoeher Luciano, Calandra Gian Marco, Groschup Bernhard, Su Jinpeng, Kimna Ceren, Rong Zhouyi, Galensowske Nikolas, Todorov Mihail Ivilinov, Jeridi Denise, Ohn Tzu-Lun, Roth Stefan, Simats Alba, Singh Vikramjeet, Khalin Igor, Pan Chenchen, Arús Bernardo A, Bruns Oliver T, Zeidler Reinhard, Liesz Arthur, Protzer Ulrike, Plesnila Nikolaus, Ussar Siegfried, Hellal Farida, Paetzold Johannes, Elsner Markus, Dietz Hendrik, Erturk Ali
Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany.
Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany.
Nat Biotechnol. 2025 Jan 14. doi: 10.1038/s41587-024-02528-1.
Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.0005 mg kg-far below the detection limits of conventional whole body imaging techniques. We demonstrate that intramuscularly injected LNPs carrying SARS-CoV-2 spike mRNA reach heart tissue, leading to proteome changes, suggesting immune activation and blood vessel damage. SCP-Nano generalizes to various types of nanocarriers, including liposomes, polyplexes, DNA origami and adeno-associated viruses (AAVs), revealing that an AAV2 variant transduces adipocytes throughout the body. SCP-Nano enables comprehensive three-dimensional mapping of nanocarrier distribution throughout mouse bodies with high sensitivity and should accelerate the development of precise and safe nanocarrier-based therapeutics.
缺乏在整个生物体中分析纳米载体细胞水平生物分布的方法,阻碍了用于靶向药物递送的高效且准确的纳米载体的开发。在此,我们展示了单细胞精准纳米载体识别技术(SCP-Nano),这是一种集成的实验和深度学习流程,可在单细胞分辨率下全面量化纳米载体在整个小鼠体内的靶向性。SCP-Nano揭示了脂质纳米颗粒(LNP)在不同注射途径后,低至0.0005mg/kg剂量下的组织分布模式,这一剂量远低于传统全身成像技术的检测限。我们证明,肌肉注射携带严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突mRNA的LNP可到达心脏组织,导致蛋白质组变化,提示免疫激活和血管损伤。SCP-Nano可推广至多种类型的纳米载体,包括脂质体、多聚体、DNA折纸结构和腺相关病毒(AAV),揭示了一种AAV2变体可转导全身的脂肪细胞。SCP-Nano能够以高灵敏度对纳米载体在小鼠体内的分布进行全面的三维映射,应会加速基于纳米载体的精准且安全的治疗方法的开发。