Mayyas Amal, Al-Samydai Ali, Oraibi Amjad Ibrahim, Debbabi Nawres, Hassan Sara S, Al-Hussainy Hany Aqeel, Salamatullah Ahmad Mohammad, Dauelbait Musaab, Bourhia Mohammed, Almaary Khalid S
Faculty of Health Sciences, Department of Pharmacy, American University of Madaba, Madaba, Jordan.
Pharmacological and Diagnostic Research Centre (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan.
J Cell Mol Med. 2025 Jan;29(1):e70349. doi: 10.1111/jcmm.70349.
This study explores novel therapeutic avenues for diabetes, a global health concern marked by elevated blood glucose levels. We investigated the anti-diabetic potential of Gymnema Sylvestre's bioactive compounds, including Gymnemic acid I, Stigmasterol, Deacylgymnemic acid, Beta-Amyrin acetate, Longispinogenin, Gymnemic acid II, Gymnemic acid, Gymnemic acid X, Gymnemaside VI, Phytic acid and Gymnemic acid X. Employing network pharmacology, molecular docking and molecular dynamics (MD), we elucidated the potential mechanism of action. SwissTargetPrediction identified targets for bioactive constituents, while DisGeNET provided diabetes-related targets. A GeneVenn diagram revealed 397 common potential targets for diabetes management. The protein-protein interaction network, constructed via the STRING database, underwent topological analysis in Cytoscape, identifying AKT1, SRC, TNF, PPARG and IL1B as top targets. Gene ontology analysis using FunRich identified crucial roles of screened targets in integrin family cell surface interactions and glypican pathways for diabetes management. Molecular interactions and binding affinities with the top target, AKT1, were assessed, with Gymnemic acid I displaying the least binding energy (-9.813) with H- and non-H-bond interactions. Molecular dynamics simulations provided insights into the distinct behaviours of Gymnemic acid I within the protein complex. In conclusion, our study elucidates the potential anti-diabetic mechanism of Gymnemic acid I, underscoring the need for further in vitro, in vivo and clinical studies to validate our findings.
本研究探索了糖尿病的新型治疗途径,糖尿病是一种以血糖水平升高为特征的全球健康问题。我们研究了匙羹藤生物活性化合物的抗糖尿病潜力,这些化合物包括匙羹藤酸I、豆甾醇、去酰基匙羹藤酸、乙酸β-香树脂醇酯、长叶远志皂苷元、匙羹藤酸II、匙羹藤酸、匙羹藤酸X、匙羹藤皂苷VI、植酸和匙羹藤酸X。通过网络药理学、分子对接和分子动力学(MD),我们阐明了其潜在作用机制。SwissTargetPrediction确定了生物活性成分的靶点,而DisGeNET提供了与糖尿病相关的靶点。基因维恩图揭示了397个糖尿病管理的共同潜在靶点。通过STRING数据库构建的蛋白质-蛋白质相互作用网络,在Cytoscape中进行了拓扑分析,确定AKT1、SRC、TNF、PPARG和IL1B为主要靶点。使用FunRich进行的基因本体分析确定了筛选出的靶点在整合素家族细胞表面相互作用和糖尿病管理的磷脂酰肌醇蛋白聚糖途径中的关键作用。评估了与主要靶点AKT1的分子相互作用和结合亲和力,匙羹藤酸I与H键和非H键相互作用显示出最低的结合能(-9.813)。分子动力学模拟提供了匙羹藤酸I在蛋白质复合物中独特行为的见解。总之,我们的研究阐明了匙羹藤酸I潜在的抗糖尿病机制,强调需要进一步的体外、体内和临床研究来验证我们的发现。