Niroula Pradeep, White Christopher David, Wang Qingfeng, Johri Sonika, Zhu Daiwei, Monroe Christopher, Noel Crystal, Gullans Michael J
Joint Center for Quantum Information and Computer Science, University of Maryland and NIST, College Park, MD 20742.
Joint Quantum Institute, University of Maryland and NIST, College Park, MD 20742.
Nat Phys. 2024;20(11). doi: 10.1038/s41567-024-02637-3.
Magic is a property of quantum states that enables universal fault-tolerant quantum computing using simple sets of gate operations. Understanding the mechanisms by which magic is created or destroyed is, therefore, a crucial step towards efficient and practical fault-tolerant computation. We observe that a random stabilizer code subject to coherent errors exhibits a phase transition in magic, which we characterize through analytic, numeric and experimental probes. Below a critical error rate, stabilizer syndrome measurements remove the accumulated magic in the circuit, effectively protecting against coherent errors; above the critical error rate syndrome measurements concentrate magic. A better understanding of such rich behavior in the resource theory of magic could shed more light on origins of quantum speedup and pave pathways for more efficient magic state generation.
魔法是量子态的一种属性,它能够使用简单的门操作集实现通用容错量子计算。因此,理解魔法产生或破坏的机制是迈向高效且实用的容错计算的关键一步。我们观察到,遭受相干错误的随机稳定器码在魔法方面表现出相变,我们通过解析、数值和实验探测对其进行了表征。在临界错误率以下,稳定器综合征测量会消除电路中积累的魔法,有效防止相干错误;在临界错误率以上,综合征测量会使魔法集中。对魔法资源理论中这种丰富行为的更好理解,可能会更深入地揭示量子加速的起源,并为更高效的魔法态生成铺平道路。