IBM Quantum, T. J. Watson Research Center, Yorktown Heights, NY, USA.
IBM Quantum, Almaden Research Center, San Jose, CA, USA.
Nature. 2024 Jan;625(7994):259-263. doi: 10.1038/s41586-023-06846-3. Epub 2024 Jan 10.
To run large-scale algorithms on a quantum computer, error-correcting codes must be able to perform a fundamental set of operations, called logic gates, while isolating the encoded information from noise. We can complete a universal set of logic gates by producing special resources called magic states. It is therefore important to produce high-fidelity magic states to conduct algorithms while introducing a minimal amount of noise to the computation. Here we propose and implement a scheme to prepare a magic state on a superconducting qubit array using error correction. We find that our scheme produces better magic states than those that can be prepared using the individual qubits of the device. This demonstrates a fundamental principle of fault-tolerant quantum computing, namely, that we can use error correction to improve the quality of logic gates with noisy qubits. Moreover, we show that the yield of magic states can be increased using adaptive circuits, in which the circuit elements are changed depending on the outcome of mid-circuit measurements. This demonstrates an essential capability needed for many error-correction subroutines. We believe that our prototype will be invaluable in the future as it can reduce the number of physical qubits needed to produce high-fidelity magic states in large-scale quantum-computing architectures.
要在量子计算机上运行大规模算法,纠错码必须能够执行一组基本操作,称为逻辑门,同时将编码信息与噪声隔离开来。我们可以通过生成称为“魔法态”的特殊资源来完成一组通用的逻辑门。因此,制备具有高保真度的魔法态以进行算法,同时将最小量的噪声引入计算中是很重要的。在这里,我们提出并实现了一种使用纠错来制备超导量子比特阵列上的魔法态的方案。我们发现,我们的方案产生的魔法态比使用设备的单个量子比特制备的魔法态更好。这证明了容错量子计算的一个基本原理,即我们可以使用纠错来提高具有噪声量子比特的逻辑门的质量。此外,我们表明,使用自适应电路可以提高魔法态的产率,其中根据中间电路测量的结果改变电路元件。这展示了许多纠错子程序所需的基本能力。我们相信,我们的原型在未来将非常有价值,因为它可以减少在大规模量子计算架构中产生高保真度魔法态所需的物理量子比特数量。