Yin Di, Li Bowen, Gao Boxiang, Chen Mengxue, Chen Dong, Meng You, Zhang Shuai, Zhang Chenxu, Quan Quan, Chen Lijie, Yang Cheng, Wong Chun-Yuen, Ho Johnny Chung Yin
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, P. R. China.
Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 999077, P. R. China.
Adv Mater. 2025 Mar;37(9):e2415739. doi: 10.1002/adma.202415739. Epub 2025 Jan 15.
Electrochemically converting nitrate (NO ) to value-added ammonia (NH) is a complex process involving an eight-electron transfer and numerous intermediates, presenting a significant challenge for optimization. A multi-elemental synergy strategy to regulate the local electronic structure at the atomic level is proposed, creating a broad adsorption energy landscape in high-entropy alloy (HEA) catalysts. This approach enables optimal adsorption and desorption of various intermediates, effectively overcoming energy-scaling limitations for efficient NH electrosynthesis. The HEA catalyst achieved a high Faradaic efficiency of 94.5 ± 4.3% and a yield rate of 10.2 ± 0.5 mg h mg . It also demonstrated remarkable stability over 250 h in an integrated three-chamber device, coupling electrocatalysis with an ammonia recovery unit for continuous NH collection. This work elucidates the catalytic mechanisms of multi-functional HEA systems and offers new perspectives for optimizing multi-step reactions by circumventing adsorption-energy scaling limitations.
将硝酸盐(NO )电化学转化为增值氨(NH)是一个复杂的过程,涉及八电子转移和众多中间体,这对优化过程提出了重大挑战。提出了一种在原子水平上调节局部电子结构的多元素协同策略,在高熵合金(HEA)催化剂中创造了广阔的吸附能态势。这种方法能够实现各种中间体的最佳吸附和解吸,有效克服能量标度限制,实现高效的氨电合成。该HEA催化剂实现了94.5±4.3%的高法拉第效率和10.2±0.5 mg h mg 的产率。在集成三室装置中,该催化剂在250小时内还表现出显著的稳定性,将电催化与氨回收单元耦合以连续收集氨。这项工作阐明了多功能HEA系统的催化机制,并为通过规避吸附能标度限制来优化多步反应提供了新的视角。