Zhang Rong, Zhang Yaqin, Xiao Bo, Zhang Shaoce, Wang Yanbo, Cui Huilin, Li Chuan, Hou Yue, Guo Ying, Yang Tao, Fan Jun, Zhi Chunyi
Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China.
Angew Chem Int Ed Engl. 2024 Aug 26;63(35):e202407589. doi: 10.1002/anie.202407589. Epub 2024 Jun 14.
Directly electrochemical conversion of nitrate (NO ) is an efficient and environmentally friendly technology for ammonia (NH) production but is challenged by highly selective electrocatalysts. High-entropy alloys (HEAs) with unique properties are attractive materials in catalysis, particularly for multi-step reactions. Herein, we first reported the application of HEA (FeCoNiAlTi) for electrocatalytic NO reduction to NH (NRA). The bulk HEA is active for NRA but limited by the unsatisfied NH yield of 0.36 mg h cm and Faradaic efficiency (FE) of 82.66 %. Through an effective phase engineering strategy, uniform intermetallic nanoparticles are introduced on the bulk HEA to increase electrochemical active surface area and charge transfer efficiency. The resulting nanostructured HEA (n-HEA) delivers enhanced electrochemical NRA performance in terms of NH yield (0.52 mg h cm) and FE (95.23 %). Further experimental and theoretical investigations reveal that the multi-active sites (Fe, Co, and Ni) dominated electrocatalysis for NRA over the n-HEA. Notably, the typical Co sites exhibit the lowest energy barrier for NRA with *NH to *NHas the rate-determining step.
硝酸盐(NO₃⁻)的直接电化学转化是一种高效且环保的制氨(NH₃)技术,但受到高选择性电催化剂的挑战。具有独特性能的高熵合金(HEAs)是催化领域有吸引力的材料,尤其适用于多步反应。在此,我们首次报道了高熵合金(FeCoNiAlTi)在电催化NO₃⁻还原制NH₃(NRA)中的应用。块状高熵合金对NRA具有活性,但受限于NH₃产率为0.36 mg h⁻¹ cm⁻²和法拉第效率(FE)为82.66 %的不理想情况。通过有效的相工程策略,在块状高熵合金上引入均匀的金属间化合物纳米颗粒,以增加电化学活性表面积和电荷转移效率。所得的纳米结构高熵合金(n-HEA)在NH₃产率(0.52 mg h⁻¹ cm⁻²)和FE(95.23 %)方面展现出增强的电化学NRA性能。进一步的实验和理论研究表明,多活性位点(Fe、Co和Ni)主导了n-HEA上的NRA电催化。值得注意的是,典型的Co位点对NRA表现出最低的能垒,其中NH₂到NH₃为速率决定步骤。