文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Elucidating stearoyl metabolism and NCOA4-mediated ferroptosis in gastric cancer liver metastasis through multi-omics single-cell integrative mendelian analysis: advancing personalized immunotherapy strategies.

作者信息

Yang Zhongqiu, Chen Yuquan, Miao Yaping, Yan Haisheng, Chen Kexin, Xu Yaoqin, Su Lanqian, Zhang Lanyue, Yan Yalan, Chi Hao, Fu Jin, Wang Lexin

机构信息

Department of General Surgery, Dazhou Central Hospital, Dazhou, 635000, China.

School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, 3004, Australia.

出版信息

Discov Oncol. 2025 Jan 15;16(1):46. doi: 10.1007/s12672-025-01769-z.


DOI:10.1007/s12672-025-01769-z
PMID:39812999
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11735723/
Abstract

BACKGROUND: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC. OBJECTIVE: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC). Following this, bulk transcriptome analyses and single-cell multiomics techniques to investigate the roles of stearoyl-GPE metabolism-related genes, particularly NCOA4, in regulating LMGC TME. RESULTS: Our analysis highlights the crucial role of stearoyl metabolism in modulating the complex microenvironment of LMGC, particularly impacting monocyte cells. Through single-cell sequencing and spatial transcriptomics, we have identified key metabolic genes specific to stearoyl metabolism within the monocyte cell population, including NCOA4. Regarding the relationship between ferroptosis, stearoyl metabolism, and LMGC findings, it is plausible that stearoyl metabolism and LMGC pathways intersect with mechanisms involved in ferroptosis. Ferroptosis, characterized by iron-dependent lipid peroxidation, represents a regulated form of cell death. The activity of Stearoyl-CoA desaturase (SCD), a critical enzyme in stearoyl metabolism, has been associated with the modulation of lipid composition and susceptibility to ferroptosis. Furthermore, the LMGC is integral to cellular processes related to oxidative stress and lipid metabolism, both of which are significant factors in the context of ferroptosis. CONCLUSION: This study enhances the understanding of the relationship between stearoyl metabolism and ferroptosis in promoting liver metastasis of gastric cancer and its role in the regulation of tumor heterogeneity. In addition, this study contributes to a deeper understanding of the dynamics of gastric cancer tumor microenvironment (TME) and provides a basis for the development of better interventions to combat cancer metastasis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/568da03f586a/12672_2025_1769_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/43eba638f90b/12672_2025_1769_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/b94aee8619f4/12672_2025_1769_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/9c58a4e741f4/12672_2025_1769_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/5037cd810b3a/12672_2025_1769_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/3a53efcaa155/12672_2025_1769_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/703134624c6d/12672_2025_1769_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/26fd2101c96c/12672_2025_1769_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/a60541ee3164/12672_2025_1769_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/350edde73de3/12672_2025_1769_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/568da03f586a/12672_2025_1769_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/43eba638f90b/12672_2025_1769_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/b94aee8619f4/12672_2025_1769_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/9c58a4e741f4/12672_2025_1769_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/5037cd810b3a/12672_2025_1769_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/3a53efcaa155/12672_2025_1769_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/703134624c6d/12672_2025_1769_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/26fd2101c96c/12672_2025_1769_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/a60541ee3164/12672_2025_1769_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/350edde73de3/12672_2025_1769_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87b4/11735723/568da03f586a/12672_2025_1769_Fig10_HTML.jpg

相似文献

[1]
Elucidating stearoyl metabolism and NCOA4-mediated ferroptosis in gastric cancer liver metastasis through multi-omics single-cell integrative mendelian analysis: advancing personalized immunotherapy strategies.

Discov Oncol. 2025-1-15

[2]
Salidroside sensitizes Triple-negative breast cancer to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy.

J Adv Res. 2024-9-29

[3]
PLAGL2-STAU1-NCOA4 axis enhances gastric cancer peritoneal metastasis by resisting ferroptosis via ferritinophagy.

Apoptosis. 2025-4

[4]
Blocking Ubiquitin-Specific Protease 7 Induces Ferroptosis in Gastric Cancer via Targeting Stearoyl-CoA Desaturase.

Adv Sci (Weinh). 2024-5

[5]
CXC chemokine receptor 4 - mediated immune modulation and tumor microenvironment heterogeneity in gastric cancer: Utilizing multi-omics approaches to identify potential therapeutic targets.

Biofactors. 2025

[6]
Integrating single-cell transcriptomics to reveal the ferroptosis regulators in the tumor microenvironment that contribute to bladder urothelial carcinoma progression and immunotherapy.

Front Immunol. 2024

[7]
Integrative analysis of ferroptosis in the hypoxic microenvironment of gastric cancer unveils the immune landscape and personalized therapeutic strategies.

Front Oncol. 2025-1-13

[8]
Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence.

Redox Biol. 2021-7

[9]
Integrative single-cell and multi-omics analyses reveal ferroptosis-associated gene expression and immune microenvironment heterogeneity in gastric cancer.

Discov Oncol. 2025-1-17

[10]
Combined analysis of bulk, single-cell RNA sequencing, and spatial transcriptomics reveals the expression patterns of lipid metabolism and ferroptosis in the immune microenvironment of metabolic-associated fatty liver disease.

Life Sci. 2025-2-1

引用本文的文献

[1]
Advances in the immunological microenvironment and immunotherapy of bladder cancer.

Front Immunol. 2025-8-19

[2]
Integrative multiomics analysis reveals the subtypes and key mechanisms of platinum resistance in gastric cancer: identification of KLF9 as a promising therapeutic target.

J Transl Med. 2025-8-7

[3]
Integrative single-cell and spatial transcriptomics uncover ELK4-mediated mechanisms in + tumor cells driving gastric cancer progression, metabolic reprogramming, and immune evasion.

Front Immunol. 2025-7-4

[4]
Precision nanomedicine: navigating the tumor microenvironment for enhanced cancer immunotherapy and targeted drug delivery.

Mol Cancer. 2025-6-3

[5]
ATP6AP1 drives pyroptosis-mediated immune evasion in hepatocellular carcinoma: a machine learning-guided therapeutic target.

Discov Oncol. 2025-4-25

本文引用的文献

[1]
CXC chemokine receptor 4 - mediated immune modulation and tumor microenvironment heterogeneity in gastric cancer: Utilizing multi-omics approaches to identify potential therapeutic targets.

Biofactors. 2025

[2]
Integrative biomarker discovery and immune profiling for ulcerative colitis: a multi-methodological approach.

Sci Rep. 2024-10-16

[3]
Revealing the association between East Asian oral microbiome and colorectal cancer through Mendelian randomization and multi-omics analysis.

Front Cell Infect Microbiol. 2024-9-17

[4]
Deciphering the role of tryptophan metabolism-associated genes ECHS1 and ALDH2 in gastric cancer: implications for tumor immunity and personalized therapy.

Front Immunol. 2024

[5]
Deciphering the impact of aggregated autophagy-related genes TUBA1B and HSP90AA1 on colorectal cancer evolution: a single-cell sequencing study of the tumor microenvironment.

Discov Oncol. 2024-9-11

[6]
Role of glycosylation-related gene MGAT1 in pancreatic ductal adenocarcinoma.

Front Immunol. 2024

[7]
Unravelling infiltrating T-cell heterogeneity in kidney renal clear cell carcinoma: Integrative single-cell and spatial transcriptomic profiling.

J Cell Mol Med. 2024-6

[8]
Deciphering the tumour microenvironment of clear cell renal cell carcinoma: Prognostic insights from programmed death genes using machine learning.

J Cell Mol Med. 2024-7

[9]
Mitophagy and clear cell renal cell carcinoma: insights from single-cell and spatial transcriptomics analysis.

Front Immunol. 2024

[10]
Causal relationship between immune cells and hepatocellular carcinoma: a Mendelian randomisation study.

J Cancer. 2024-6-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索