Suppr超能文献

利用稳健秩聚合算法鉴定急性髓系白血病中可能的药物治疗靶点及相关免疫细胞浸润特性

Identification of possible drug treatment targets and related immune cell infiltration properties in acute myeloid leukemia utilizing robust rank aggregation algorithm.

作者信息

Zhu Hengzhou, Zhang Chencen, Huang Lei, Zhang Baonan, Huang Xiaona, You Jianliang, Jin Chunhui

机构信息

Department of Oncology, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China.

出版信息

Leuk Lymphoma. 2025 May;66(5):930-941. doi: 10.1080/10428194.2025.2451064. Epub 2025 Jan 15.

Abstract

In this study, we aimed to uncover novel biomarkers in acute myeloid leukemia (AML) that could serve as prognostic indicators or therapeutic targets. We analyzed AML microarray datasets from the Gene Expression Omnibus (GEO) repository, identifying key differentially expressed genes (DEGs) through the robust rank aggregation (RRA) approach. The functions of these DEGs were elucidated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Additionally, the CIBERSORT algorithm was employed to assess immune cell infiltration in AML. Six hub genes were identified using the cytoHubba plugin, and their clinical significance, survival impact, and meta-analyses were conducted. Through comprehensive bioinformatics and qPCR analyses, we gained new insights into AML pathogenesis and metastasis, identifying FCGR3B, FLT3, EREG, and MMP9 as potential prognostic biomarkers. Antagonists targeting FCGR3B, FLT3, and MMP9, or agonists for EREG, hold promise as therapeutic and preventative strategies for AML.

摘要

在本研究中,我们旨在揭示急性髓系白血病(AML)中的新型生物标志物,这些标志物可作为预后指标或治疗靶点。我们分析了来自基因表达综合数据库(GEO)存储库的AML微阵列数据集,通过稳健秩聚合(RRA)方法识别关键差异表达基因(DEG)。通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析阐明了这些DEG的功能。此外,采用CIBERSORT算法评估AML中的免疫细胞浸润。使用cytoHubba插件鉴定了六个枢纽基因,并对其临床意义、生存影响和荟萃分析进行了研究。通过全面的生物信息学和qPCR分析,我们对AML的发病机制和转移有了新的认识,确定FCGR3B、FLT3、EREG和MMP9为潜在的预后生物标志物。靶向FCGR3B、FLT3和MMP9的拮抗剂或EREG的激动剂有望成为AML的治疗和预防策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验