Mangas-Florencio Lluís, Herrero-Gómez Alba, Eills James, Azagra Marc, Batlló-Rius Marina, Marco-Rius Irene
Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
Vitala Technologies, S.L., 08028 Barcelona, Spain.
Anal Chem. 2025 Jan 28;97(3):1594-1602. doi: 10.1021/acs.analchem.4c04183. Epub 2025 Jan 15.
Nuclear magnetic resonance (NMR) spectroscopy is a valuable diagnostic tool limited by low sensitivity due to low nuclear spin polarization. Hyperpolarization techniques, such as dissolution dynamic nuclear polarization, significantly enhance sensitivity, enabling real-time tracking of cellular metabolism. However, traditional high-field NMR systems and bioreactor platforms pose challenges, including the need for specialized equipment and fixed sample volumes. This study introduces a scalable, 3D-printed bioreactor platform compatible with low-field NMR spectrometers, designed to accommodate bioengineered 3D cell models. The bioreactor is fabricated using biocompatible materials and features a microfluidic system for media recirculation, ensuring optimal culture conditions during NMR acquisition and cell maintenance. We characterized the NMR compatibility of the bioreactor components and confirmed minimal signal distortion. The bioreactor's efficacy was validated using HeLa and HepG2 cells, demonstrating prolonged cell viability and enhanced metabolic activity in 3D cultures compared to 2D cultures. Hyperpolarized [1-C] pyruvate experiments revealed distinct metabolic profiles for the two cell types, highlighting the bioreactor's ability to discern metabolic profiles among samples. Our results indicate that the bioreactor platform supports the maintenance and analysis of 3D cell models in NMR studies, offering a versatile and accessible tool for metabolic and biochemical research in tissue engineering. This platform bridges the gap between advanced cellular models and NMR spectroscopy, providing a robust framework for future applications in nonspecialized laboratories. The design files for the 3D printed components are shared within the text for easy download and customization, promoting their use and adaptation for further applications.
核磁共振(NMR)光谱法是一种有价值的诊断工具,但由于核自旋极化率低,其灵敏度受到限制。超极化技术,如溶解动态核极化,可显著提高灵敏度,从而实现对细胞代谢的实时跟踪。然而,传统的高场NMR系统和生物反应器平台存在挑战,包括需要专门设备和固定的样品体积。本研究介绍了一种与低场NMR光谱仪兼容的可扩展3D打印生物反应器平台,该平台旨在容纳生物工程3D细胞模型。该生物反应器采用生物相容性材料制造,并具有用于培养基再循环的微流体系统,可确保在NMR采集和细胞维持过程中保持最佳培养条件。我们对生物反应器组件的NMR兼容性进行了表征,并确认信号失真最小。使用HeLa和HepG2细胞验证了该生物反应器的功效,结果表明与二维培养相比,三维培养中细胞活力延长,代谢活性增强。超极化[1-C]丙酮酸实验揭示了两种细胞类型不同的代谢谱,突出了该生物反应器区分样品间代谢谱的能力。我们的结果表明,该生物反应器平台支持在NMR研究中对3D细胞模型进行维持和分析,为组织工程中的代谢和生化研究提供了一种通用且易于使用的工具。该平台弥合了先进细胞模型与NMR光谱之间的差距,为未来在非专业实验室中的应用提供了一个强大的框架。文中共享了3D打印组件的设计文件,便于下载和定制,以促进其在进一步应用中的使用和调整。